[1] 郑荣才. 四川盆地下侏罗统大安寨段高分辨率层序地层学[J]. 沉积学报,1998,16(2):42-49.

Zheng Rongcai. High resolution sequence stratigraphy of Da’anzhai Formation, Lower Jurassic in Sichuan Basin[J]. Acta Sedimentologica Sinica, 1998, 16(2): 42-49.
[2] 梁狄刚,冉隆辉,戴弹申,等. 四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J]. 石油学报,2011,32(1):8-17.

Liang Digang, Ran Longhui, Dai Danshen, et al. A re-recognition of the prospecting potential of Jurassic large-area and non-conventional oils in the central-northern Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 8-17.
[3] 贾承造,邹才能,李建忠,等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报,2012,33(3):343-350.

Jia Chengzao, Zou Caineng, Li Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.
[4] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26.

Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
[5] 杨光,黄东,黄平辉,等. 四川盆地中部侏罗系大安寨段致密油高产稳产主控因素[J]. 石油勘探与开发,2017,44(5):817-826.

Yang Guang, Huang Dong, Huang Pinghui, et al. Control factors of high and stable production of Jurassic Da’anzhai member tight oil in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 817-826.
[6] 印森林,谢建勇,程乐利,等. 陆相页岩油研究进展及开发地质面临的问题[J]. 沉积学报,2022,40(4):979-995.

Yin Senlin, Xie Jianyong, Cheng Leli, et al. Advances in continental shale oil research and problems of reservoir geology[J]. Acta Sedimentologica Sinica, 2022, 40(4): 979-995.
[7] 魏志红,刘若冰,魏祥峰,等. 四川盆地复兴地区陆相页岩油气勘探评价与认识[J]. 中国石油勘探,2022,27(1):111-119.

Wei Zhihong, Liu Ruobing, Wei Xiangfeng, et al. Exploration evaluation and recognition of continental shale oil and gas in Fuxing area, Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 111-119.
[8] 厚刚福,宋兵,倪超,等. 致密油源储配置特征及油气勘探意义:以四川盆地川中地区侏罗系大安寨段为例[J]. 沉积学报,2021,39(5):1078-1085.

Hou Gangfu, Song Bing, Ni Chao, et al. Tight oil source-reservoir matching characteristics and its significance for oil and gas exploration: A case study of the Jurassic Da’anzhai member in the central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1078-1085.
[9] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[10] Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186): 456-459.
[11] Gregory D D, Large R R, Halpin J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1389-1410.
[12] 刘田,冯明友,王兴志,等. 渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学,2019,30(5):740-750.

Liu Tian, Feng Mingyou, Wang Xingzhi, et al. Elemental geochemical characteristics and limit on sedimentary environment in the Late Ordovician Wufengian period in the Wuxi area, NE Chongqing[J]. Natural Gas Geoscience, 2019, 30(5): 740-750.
[13] Xu L B, Wang X Z, Feng M Y, et al. Deciphering the Upper Ordovician Wufeng siliceous shale depositional environments (Wuxi, NE Chongqing) based on multi-proxy record[J]. Petroleum, 2021, 7(1): 10-20.
[14] Jochum J, Friedrich G, Leythaeuser D, et al. Hydrocarbon-bearing fluid inclusions in calcite-filled horizontal fractures from mature Posidonia Shale (Hils Syncline, NW Germany)[J]. Ore Geology Reviews, 1995, 9(5): 363-370.
[15] Nuriel P, Weinberger R, Rosenbaum G, et al. Timing and mechanism of Late-Pleistocene calcite vein formation across the Dead Sea Fault Zone, northern Israel[J]. Journal of Structural Geology, 2012, 36: 43-54.
[16] Wang M, Chen Y, Bain W M, et al. Direct evidence for fluid overpressure during hydrocarbon generation and expulsion from organic-rich shales[J]. Geology, 2020, 48(4): 374-378.
[17] 黄伟林,冯明友,刘小洪,等. 渝东石柱地区龙马溪组页岩纤维状脉体成因[J]. 地质科技通报,2020,39(3):160-169.

Huang Weilin, Feng Mingyou, Liu Xiaohong, et al. Genesis of fibrous veins in the shales of Longmaxi Formation in Shizhu area, eastern Chongqing[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 160-169.
[18] Lyons T W, Anbar A D, Severmann S, et al. Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 507-534.
[19] 杨跃明,黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业,2019,39(6):22-33.

Yang Yueming, Huang Dong. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 22-33.
[20] 刘皓天,李雄,万云强,等. 陆相页岩气形成条件及勘探开发潜力:以川东涪陵北地区侏罗系东岳庙段为例[J]. 海相油气地质,2020,25(2):148-154.

Liu Haotian, Li Xiong, Wan Yun-qiang, et al. Formation conditions and exploration and development potential of continental shale gas: A case of Dongyuemiao member of the Jurassic in north Fuling area, eastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2): 148-154.
[21] 李世临,张文济,李延钧,等. 川东地区下侏罗统自流井组东岳庙段烃源岩评价[J]. 天然气勘探与开发,2021,44(2):11-18.

Li Shilin, Zhang Wenji, Li Yanjun, et al. Evaluation on source rocks of Dongyuemiao member in the Lower Jurassic Zi-liujing Formation, eastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(2): 11-18.
[22] Shu Y, Bao H Y, Zheng Y H, et al. Lithofacies types, assemblage characteristics, and sedimentary evolution model of lacustrine shale in Dongyuemiao Formation of Fuxing area[J]. Frontiers in Earth Science, 2021, 9: 772581.
[23] 何文渊,白雪峰,蒙启安,等. 四川盆地陆相页岩油成藏地质特征与重大发现[J]. 石油学报,2022,43(7):885-898.

He Wenyuan, Bai Xuefeng, Meng Qi’an, et al. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 885-898.
[24] 黄棋棽. 川北地区下侏罗统东岳庙段页岩气富集规律研究[D]. 成都:成都理工大学,2015.

Huang Qichen. The study of shale gas enrichment pattern in the Dongyuemiao member of Ziliujing Formation of Lower Jurassic in northern Sichuan Basin, China[D]. Chengdu: Chengdu University of Technology, 2015.
[25] 高健,林良彪,任天龙,等. 川北地区下侏罗统东岳庙段页岩气富集主控因素研究[J]. 岩性油气藏,2016,28(5):67-75.

Gao Jian, Lin Liangbiao, Ren Tianlong, et al. Controlling factors for shale gas enrichment of the Lower Jurassic Dongyuemiao member in the northern Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(5): 67-75.
[26] 强子同,杨植江,王建民,等. 大安寨石灰岩的成岩作用与成岩圈闭[J]. 地球化学杂志,1981(3) :232-241.

Qiang Zitong, Yang Zhijiang, Wang Jianmin, et al. Diagenesis and diagenetic trap of Da’anzhai limestone[J]. Geochimica, 1981(3): 232-241.
[27] 王昕尧,金振奎,郭芪恒,等. 川东北下侏罗统大安寨段陆相页岩方解石成因[J]. 沉积学报,2021,39(3):704-712.

Wang Xinyao, Jin Zhenkui, Guo Qiheng, et al. Genesis of calcite in nonmarine shale of the Lower Jurassic Da’anzhai member, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 704-712.
[28] Milliken K L, Day-Stirrat R J. Cementation in mudrocks: Brief review with examples from cratonic basin mudrocks[J]. AAPG Memoir, 2013(103): 133-150.
[29] 刘忠宝,胡宗全,刘光祥,等. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质,2021,42(1):136-145.

Liu Zhongbao, Hu Zongquan, Liu Guangxiang, et al. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 136-145.
[30] 马存飞,董春梅,王倩,等. X射线衍射残余应力测试技术在纤维状方解石脉体现今应力状态分析中的应用[J]. 中国石油大学学报(自然科学版),2021,45(1):23-30.

Ma Cunfei, Dong Chunmei, Wang Qian, et al. Application of X-ray diffraction residual stress testing technology in the analysis of present stress state of fibrous calcite vein[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1): 23-30.
[31] 刘文均. 湘南泥盆系碳酸盐岩中锶的分布特点及其环境意义[J]. 沉积学报,1989,7(2):15-20.

Liu Wenjun. The distributive characters and environmental signeficance of strontium in carbonate rocks of Devonian in southern Gunan[J]. Acta Sedimentologica Sinica, 1989, 7(2): 15-20.
[32] Cobbold P R, Zanella A, Rodrigues N, et al. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20.
[33] Hilgers C, Sindern S. Textural and isotopic evidence on the fluid source and transport mechanism of antitaxial fibrous microstructures from the Alps and the Appalachians[J]. Geofluids, 2005, 5(4): 239-250.
[34] Hilgers C, Koehn D, Bons P D, et al. Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins[J]. Journal of Structural Geology, 2001, 23(6/7): 873-885.
[35] 胡延旭,韩春元,康积伦,等. 页岩油甜点储层成因新模式:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 天然气地球科学,2022,33(1):125-137.

Hu Yanxu, Han Chunyuan, Kang Jilun, et al. New genesis model of the shale oil sweet-spot reservoir: Case study of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(1): 125-137.
[36] 王东升,张金川,李振,等. 草莓状黄铁矿的形成机制探讨及其对古氧化—还原环境的反演[J]. 中国地质,2022,49(1):36-50.

Wang Dongsheng, Zhang Jinchuan, Li Zhen, et al. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 2022, 49(1): 36-50.
[37] Meng Q F, Hooker J, Cartwright J. Displacive widening of calcite veins in shale: Insights into the force of crystallization[J]. Journal of Sedimentary Research, 2018, 88(3): 327-343.
[38] 王鹏威,张亚雄,刘忠宝,等. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学,2021,32(11):1724-1734.

Wang Pengwei, Zhang Yaxiong, Liu Zhongbao, et al. Microfracture development at Ziliujing lacustrine shale reservoir and its significance for shale-gas enrichment at Fuling area in eastern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(11): 1724-1734.
[39] 庞正炼,陶士振,张琴,等. 四川盆地侏罗系储层致密化及其对致密油分布规律的影响[C]//中国地球物理2013:第四专题论文集. 昆明:中国地球物理学会,2013:21.

Pang Zhenglian, Tao Shizhen, Zhang Qin, et al. Jurassic reservoir densification in Sichuan Basin and its influence on tight oil distribution[C]//China geophysics 2013-the fourth monograph collection. Kunming: China Geophysical Society, 2013: 21.