[1] |
Scotese C R. Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents, Rodinia and Pannotia[J]. Geological Society, London, Special Publications, 2009, 326(1): 67-83. |
[2] |
Huey R B, Ward P D. Hypoxia, global warming, and terrestrial Late Permian extinctions[J]. Science, 2005, 308(5720): 398-401. |
[3] |
Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198. |
[4] |
Benton M J, Newell A J. Impacts of global warming on Permo-Triassic terrestrial ecosystems[J]. Gondwana Research, 2014, 25(4): 1308-1337. |
[5] |
Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276(5310): 235-238. |
[6] |
Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307(5710): 706-709. |
[7] |
Zhang B L, Yao S P, Wignall P B, et al. Widespread coastal upwelling along the eastern paleo-tethys margin (South China) during the Middle Permian (Guadalupian): Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2018, 97: 113-126. |
[8] |
Ivanov A V, He H Y, Yan L K, et al. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism[J]. Earth-Science Reviews, 2013, 122: 58-76. |
[9] |
Erwin D H, Bowring S A, Jin Y G. End-Permian mass extinctions: A review[M]//Koeberl C, MacLeod K G. Catastrophic events and mass extinctions: Impacts and beyond. Boulder: Geological Society of America Bulletin, 2002: 363-383. |
[10] |
马永生. 普光气田天然气地球化学特征及气源探讨[J]. 天然气地球科学,2008,19(1):1-7.
Ma Yongsheng. Geochemical characteristics and origin of natural gases from Puguang gas field on eastern Sichuan Basin[J]. Natural Gas Geoscience, 2008, 19(1): 1-7. |
[11] |
Arthur M A, Sageman B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22: 499-551. |
[12] |
Murray J W, İzdar E. The 1988 Black Sea oceanographic expedition: Overview and new discoveries[J]. Oceanography, 1989, 2(1): 15-21. |
[13] |
Rullkötter J. Organic matter: The driving force for early diagenesis[M]//Schulz H D, Zabel M. Marine geochemistry. Berlin: Springer, 2006: 125-168. |
[14] |
Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. |
[15] |
张毅,郑书粲,高波,等. 四川广元上寺剖面上二叠统大隆组有机质分布特征与富集因素[J]. 地球科学,2017,42(6):1008-1025.
Zhang Yi, Zheng Shucan, Gao Bo, et al. Distribution characteristics and enrichment factors of organic matter in Upper Permian Dalong Formation of Shangsi section, Guangyuan, Sichuan Basin[J]. Earth Science, 2017, 42(6): 1008-1025. |
[16] |
Shen J, Zhou L, Feng Q L, et al. Paleo-productivity evolution across the Permian-Triassic boundary and quantitative calculation of primary productivity of black rock series from the Dalong Formation, South China[J]. Science China Earth Sciences, 2014, 57(7): 1583-1594. |
[17] |
陈斌,肖明元,吴丽云,等. 湖北京山地区大隆组沉积特征与烃源岩的关系[J]. 沉积与特提斯地质,2017,37(1):41-47.
Chen Bin, Xiao Mingyuan, Wu Liyun, et al. Sedimentary characteristics and their bearings to the source rocks in the Dalong Formation, Jingshan region, Hubei[J]. Sedimentary Geology and Tethyan Geology, 2017, 37(1): 41-47. |
[18] |
遇昊,陈代钊,韦恒叶,等. 鄂西地区上二叠乐平统大隆组硅质岩成因及有机质富集机理[J]. 岩石学报,2012,28(3):1017-1027.
Yu Hao, Chen Daizhao, Wei Hengye, et al. Origin of bedded chert and organic matter accumulation in the Dalong Formation of Upper Permian in western Hubei province[J]. Acta Petrologica Sinica, 2012, 28(3): 1017-1027. |
[19] |
雷勇,冯庆来,桂碧雯. 安徽巢湖平顶山剖面上二叠统大隆组有机质富集的地球生物学模式[J]. 古地理学报,2010,12(2):202-211.
Lei Yong, Feng Qinglai, Gui Biwen. Geobiological model for organic enrichment in the Upper Permian Dalong Formation of Pingdingshan section at Chaohu, Anhui[J]. Journal of Palaeogeography, 2010, 12(2): 202-211. |
[20] |
罗进雄,何幼斌. 中上扬子地区二叠纪缺氧环境[J]. 古地理学报,2011,13(1):11-20.
Luo Jinxiong, He Youbin. Anoxic environments of the Permian of Middle and Upper Yangtze area[J]. Journal of Palaeogeography, 2011, 13(1): 11-20. |
[21] |
Scotese C R, Langford R P. Pangea and the paleogeography of the Permian[M]//Scholle P A, Peryt T M, Ulmer-Scholle D S. The Permian of northern Pangea. Berlin: Springer, 1995: 3-19. |
[22] |
Mei S L, Henderson C M. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(3/4): 237-260. |
[23] |
王立亭,陆彦邦,赵时久,等. 中国南方二叠纪岩相古地理与成矿作用[M]. 北京:地质出版社,1994:60-61.
Wang Liting, Lu Yanbang, Zhao Shijiu, et al. Permian lithofacies paleogeography and metallogenesis in South China[M]. Beijing: Geological Publishing House, 1994: 60-61. |
[24] |
罗志立. 扬子古板块的形成及其对中国南方地壳发展的影响[J]. 地质科学,1979,4(2):127-138.
Luo Zhili. On the occurrence of Yangze old plate and its influence on the evolution of lithosphere in the southern part of China[J]. Scientia Geologica Sinica, 1979, 4(2): 127-138. |
[25] |
Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72. |
[26] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
[27] |
Wang J G, Chen D Z, Yan D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306-307: 129-138. |
[28] |
Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24. |
[29] |
Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631-3642. |
[30] |
Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. |
[31] |
Tossell J A. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2005, 69(12): 2981-2993. |
[32] |
Scott C, Lyons T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies[J]. Chemical Geology, 2012, 324-325: 19-27. |
[33] |
Scholz F. Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies[J]. Earth-Science Reviews, 2018, 184: 29-45. |
[34] |
Ardakani O H, Chappaz A, Sanei H, et al. Effect of thermal maturity on remobilization of molybdenum in black shales[J]. Earth and Planetary Science Letters, 2016, 449: 311-320. |
[35] |
Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation:Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58. |
[36] |
Ge X T, Chen D Z, Zhang G J, et al. Marine redox evolution and organic accumulation in an intrashelf basin, NE Sichuan Basin during the Late Permian[J]. Marine and Petroleum Geology, 2022, 140: 105633. |
[37] |
Algeo T J, Rowe H. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324-325: 6-18. |
[38] |
Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016. |
[39] |
Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318. |
[40] |
Piper D Z, Perkins R B. A modern vs. Permian black shale-the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197. |
[41] |
Shen J, Algeo T J, Zhou L, et al. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects[J]. Geobiology, 2012, 10(1): 82-103. |
[42] |
Grasby S E, Shen W J, Yin R S, et al. Isotopic signatures of mercury contamination in latest Permian oceans[J]. Geology, 2017, 45(1): 55-58. |
[43] |
Sanei H, Grasby S E, Beauchamp B. Latest Permian mercury anomalies[J]. Geology, 2012, 40(1): 63-66. |
[44] |
Grasby S E, Sanei H, Beauchamp B, et al. Mercury deposition through the Permo-Triassic biotic crisis[J]. Chemical Geology, 2013, 351: 209-216. |
[45] |
Wang X D, Cawood P A, Zhao H, et al. Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments[J]. Earth and Planetary Science Letters, 2018, 496: 159-167. |
[46] |
Wang X D, Cawood P A, Zhao H, et al. Global mercury cycle during the end-Permian mass extinction and subsequent Early Triassic recovery[J]. Earth and Planetary Science Letters, 2019, 513: 144-155. |
[47] |
Shen J, Algeo T J, Planavsky N J, et al. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction[J]. Earth-Science Reviews, 2019, 195: 191-212. |
[48] |
Shen J, Chen J B, Algeo T J, et al. Evidence for a prolonged Permian-Triassic extinction interval from global marine mercury records[J]. Nature Communications, 2019, 10(1): 1563. |
[49] |
Shen J, Algeo T J, Hu Q, et al. Volcanism in South China during the Late Permian and its relationship to marine ecosystem and environmental changes[J]. Global and Planetary Change, 2013, 105: 121-134. |
[50] |
Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al[J]. Paleoceanography, 2000, 15(2): 210-228. |
[51] |
Beckmann B, Flögel S, Hofmann P, et al. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response[J]. Nature, 2005, 437(7056): 241-244. |
[52] |
熊尚发,朱园健,周茹,等. 白水黄土—红粘土化学风化强度的剖面特征与粒度效应[J]. 第四纪研究,2008,28(5):812-821.
Xiong Shangfa, Zhu Yuanjian, Zhou Ru, et al. Chemical weathering intensity and its grain-size dependence for the loess-red clay deposit of the Baishui section, Chinese Loess Plateau[J]. Quaternary Sciences, 2008, 28(5): 812-821. |
[53] |
Beauchamp B, Baud A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(1/2): 37-63. |
[54] |
Racki G, Cordey F. Radiolarian palaeoecology and radiolarites: Is the present the key to the past?[J]. Earth-Science Reviews, 2000, 52(1/2/3): 83-120. |
[55] |
Sweere T, van den Boorn S, Dickson A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245. |
[56] |
Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 344-361. |
[57] |
Fluteau F, Besse J, Broutin J, et al. The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167(1/2): 39-71. |
[58] |
Winguth A, Winguth C. Precession-driven monsoon variability at the Permian-Triassic boundary-Implications for anoxia and the mass extinction[J]. Global and Planetary Change, 2013, 105: 160-170. |
[59] |
Winguth A M E, Maier-Reimer E. Causes of the marine productivity and oxygen changes associated with the Permian-Triassic boundary: A reevaluation with ocean general circulation models[J]. Marine Geology, 2005, 217(3/4): 283-304. |
[60] |
Habicht K S, Gade M, Thamdrup B, et al. Calibration of sulfate levels in the Archean ocean[J]. Science, 2002, 298(5602): 2372-2374. |
[61] |
Huang T Y, Chen D Z, Fu Y, et al. Development and evolution of a euxinic wedge on the ferruginous outer shelf of the Early Cambrian Yangtze sea[J]. Chemical Geology, 2019, 524: 259-27 |