[1] Beukes N J. Ooids and oolites of the proterophytic Boomplaas Formation, Transvaal Supergroup, Griqualand west, South Africa[M]//Peryt T M. Coated grains. Berlin: Springer, 1983: 199-214.
[2] Tucker M E, Wright V P. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990: 1-496.
[3] Davies P J, Bubela B, Ferguson J. The formation of ooids[J]. Sedimentology, 1978, 25(5): 703-730.
[4] Gaffey S J. Formation and infilling of pits in marine ooid surfaces[J]. Journal of Sedimentary Research, 1983, 53(1): 193-208.
[5] Reid R P, Visscher P T, Decho A W, et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J]. Nature, 2000, 406(6799): 989-992.
[6] Duguid S M A, Kyser T K, James N P, et al. Microbes and ooids[J]. Journal of Sedimentary Research, 2010, 80(3): 236-251.
[7] 梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报,2012,30(1):20-32.

Mei Mingxiang. Brief introduction on new advances on the origin of ooids[J]. Acta Sedimentologica Sinica, 2012, 30(1): 20-32.
[8] Reeder S L, Rankey E C. Controls on morphology and sedimentology of carbonate tidal deltas, Abacos, Bahamas[J]. Marine Geology, 2009, 267(3/4): 141-155.
[9] Edgcomb V P, Bernhard J M, Beaudoin D, et al. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas[J]. Geobiology, 2013, 11(3): 234-251.
[10] Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora[J]. Geobiology, 2013, 11(5): 420-436.
[11] Diaz M R, Van Norstrand J D, Eberli G P, et al. Functional gene diversity of oolitic sands from Great Bahama Bank[J]. Geobiology, 2014, 12(3): 231-249.
[12] Diaz M R, Swart P K, Eberli G P, et al. Geochemical evidence of microbial activity within ooids[J]. Sedimentology, 2015, 62(7): 2090-2112.
[13] 周志澄,罗辉,许波,等. 四川江油渔洞子飞仙关组巨鲕灰岩的成因解释:在微观及超微世界里认识华南早三叠世巨鲕灰岩的成因[J]. 地层学杂志,2018,42(2):145-158.

Zhou Zhicheng, Luo Hui, Xu Bo, et al. Giant oolitic limestone in the Lower Triassic Feixianguan Formation at the Yudongzi section in the Jiangyou area, Sichuan province[J]. Journal of Stratigraphy, 2018, 42(2): 145-158.
[14] 郭芪恒,金振奎,史书婷,等. 鲕粒成因研究进展[J]. 沉积学报,2023,41(4):959-967.

Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Research progress on the formation of ooids[J]. Acta Sedimentologica Sinica, 2023, 41(4): 959-967.
[15] 殷鸿福,宋海军. 古、中生代之交生物大灭绝与泛大陆聚合[J]. 中国科学:地球科学,2013,43(10):1539-1552.

Yin Hongfu, Song Haijun. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition[J]. Science China Earth Sciences, 2013, 43(10): 1539-1552.
[16] 沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135.

Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135.
[17] 谢树成. 距今2.52亿年前后的生物地球化学循环与海洋生态系统崩溃:对现代海洋的启示[J]. 中国科学:地球科学,2018,48(12):1600-1605.

Xie Shucheng. The shift of biogeochemical cycles indicative of the progressive marine ecosystem collapse across the Permian-Triassic boundary: An analog to modern oceans[J]. Science China Earth Sciences, 2018, 48(12): 1600-1605.
[18] Sepkoski J J, Bambach R K, Droser M L. Secular changes in Phanerozoic event bedding and the biological overprint[M]//Einsele G, Rieken W, Scilacher A. Cycles and event in stratigraphy. Berlin: Springer, 1991: 298-312.
[19] 朱小二. 华南晚二叠世—早三叠世鲕粒成因机制及其环境意义[D]. 北京:中国石油大学(北京),2021.

Zhu Xiaoer. Formation mechanism of ooids and their environmental significance in Late Permian to Early Triassic, South China[D]. Beijing: China University of Petroleum (Beijing), 2021.
[20] Dai M Y, Zhang H S, Zheng W, et al. Giant ooids of microbial origin from the Zhangxia Formation (Cambrian Miaolingian Series) in North China[J]. Journal of Palaeogeography, 2022, 11(1): 52-68.
[21] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
[22] Li F, Yan J X, Algeo T, et al. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)[J]. Global and Planetary Change, 2013, 105: 102-120.
[23] Li X W, Trower E J, Lehrmann D J, et al. Implications of giant ooids for the carbonate chemistry of Early Triassic seawater[J]. Geology, 2021, 49(2): 156-161.
[24] Lehrmann D J, Minzoni M, Li X W, et al. Lower Triassic oolites of the Nanpanjiang Basin, South China: Facies architecture, giant ooids, and diagenesis: Implications for hydrocarbon reservoirs[J]. AAPG Bulletin, 2012, 96(8): 1389-1414.
[25] 古强,邢凤存,钱红杉,等. 川东北飞仙关组鲕粒特征与水动力相关性研究[J]. 沉积学报,2021,39(6):1371-1386.

Gu Qiang, Xing Fengcun, Qian Hongshan, et al. Correlation between ooid characteristics and hydrodynamic forces in the Feixianguan Formation, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386.
[26] Tan Q, Shi Z J, Tian Y M, et al. Origin of ooids in ooidal‐muddy laminites: A case study of the Lower Cambrian Qingxudong Formation in the Sichuan Basin, South China[J]. Geological Journal, 2018, 53(5): 1716-1727.
[27] Lu C J, Li F, Oehlert A M, et al. Reconstructing paleoceanographic conditions during the Middle Ediacaran: Evidence from giant ooids in South China[J]. Precambrian Research, 2020, 351: 105945.
[28] Groves J R, Altiner D, Boyce, M D, et al. "Disaster Oolites" in the Permian-Triassic boundary interval, Tauride Mountains (Turkey)[J]. Geological Society of America, Abstracts With Programs, North-Central Section, 2003, 35(2): 48.
[29] Tian L, Bottjer D J, Tong J N, et al. Distribution and size variation of ooids in the aftermath of the Permian-Triassic mass extinction[J]. Palaios, 2015, 30(9): 714-727.
[30] 黄仁春,邢凤存,范小军,等. 四川盆地元坝地区长兴组—飞仙关组高精度层序地层格架的建立及礁滩储集层预测[J]. 古地理学报,2019,21(2):369-378.

Huang Renchun, Xing Fengcun, Fan Xiaojun, et al. Establishment of high-precision sequence stratigraphic framework of the Changxing-Feixianguan Formations and prediction of reef-shoal reservoirs in Yuanba area, Sichuan Basin[J]. Journal of Palaeogeography, 2019, 21(2): 369-378.
[31] Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian–Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis[J]. Earth-science Reviews, 2015, 149: 163-180.
[32] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[33] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.
[34] 李飞,武思琴,刘柯. 鲕粒原生矿物识别及对海水化学成分变化的指示意义[J]. 沉积学报,2015,33(3):500-511.

Li Fei, Wu Siqin, Liu Ke. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry[J]. Acta Sedimentologica Sinica, 2015, 33(3): 500-511.
[35] Li F, Yan J X, Burne R V, et al. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 96-107.
[36] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414.

Xiong Xiaohui, Xiao Jiafei. Geochemical indicators of sedimentary environments: A summary[J]. Earth and Environment, 2011, 39(3): 405-414.
[37] 赵彦彦,李三忠,李达,等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学,2019,43(1):141-167.

Zhao Yanyan, Li Sanzhong, Li Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.
[38] Planavsky N, Bekker A, Rouxel O J, et al. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition[J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6387-6405.
[39] Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989, 92(1): 11-26.
[40] Kump L R. Alternative modeling approaches to the geochemical cycles of carbon, sulfur, and strontium isotopes[J]. American Journal of Science, 1989, 289(4): 390-410.
[41] Veizer J. Strontium isotopes in seawater through time[J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 141-167.
[42] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
[43] Kinsman D J J. Interpretation of Sr+2 concentrations in carbonate minerals and rocks[J]. Journal of Sedimentary Research, 1969, 39(2): 486-508.
[44] Brand U, Veizer J. origin of coated grains: Trace element constraints[M]//Peryt T M. Coated grains. Berlin: Springer Heidelberg, 1983: 9-26.
[45] Sandberg P A. New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy[J]. Sedimentology, 1975, 22(4): 497-537.
[46] Zou C H, Mao L J, Tan Z H, et al. Geochemistry of major and trace elements in sediments from the Lubei Plain, China: Constraints for paleoclimate, paleosalinity, and paleoredox environment[J]. Journal of Asian Earth Sciences: X, 2021, 6: 100071.
[47] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
[48] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[49] Mishra P K, Mohanty S P. Geochemistry of carbonate rocks of the Chilpi Group, Bastar Craton, India: Implications on ocean paleoredox conditions at the Late Paleoproterozoic Era[J]. Precambrian Research, 2021, 353: 106023.
[50] Bau M, Möller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling[J]. Marine Chemistry, 1997, 56(1/2): 123-131.
[51] de Carlo E H, Green W J. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica[J]. Geochimica et Cosmochimica Acta, 2002, 66(8): 1323-1333.
[52] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
[53] van Kranendonk M J, Webb G E, Kamber B S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean[J]. Geobiology, 2003, 1(2): 91-108.
[54] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710): 206-210.
[55] Nozaki Y, Lerche D, Alibo D S, et al. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand[J]. Geochimica et Cosmochimica Acta, 2000, 64(23): 3983-3994.
[56] Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250.
[57] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833.
[58] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
[59] Retallack G J. Permian and Triassic greenhouse crises[J]. Gondwana Research, 2013, 24(1): 90-103.
[60] Kajiwara Y, Yamakita S, Ishida K, et al. Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 111(3/4): 367-379.
[61] Algeo T J, Ellwood B, Nguyen T K T, et al. The Permian–Triassic boundary at Nhi Tao, Vietnam: Evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 304-327.
[62] Song H J, Wignall P B, Tong J N, et al. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic[J]. Earth and Planetary Science Letters, 2015, 424: 140-147.
[63] Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
[64] Pietsch C, Bottjer D J. The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic[J]. Earth-Science Reviews, 2014, 137: 65-84.
[65] Plee K, Ariztegui D, Martini R, et al. Unravelling the microbial role in ooid formation-results of an in situ experiment in modern freshwater Lake Geneva in Switzerland[J]. Geobiology, 2008, 6(4): 341-350.
[66] Kershaw S, Crasquin S, Li Y, et al. Microbialites and global environmental change across the Permian-Triassic boundary: A synthesis[J]. Geobiology, 2012, 10(1): 25-47.
[67] Pacton M, Ariztegui D, Wacey D, et al. Going nano: A new step toward understanding the processes governing freshwater ooid Formation[J]. Geology, 2012, 40(6): 547-550.