[1] |
刘强虎,朱红涛,杜晓峰,等. 渤海海域砂砾岩体沉积响应进展及热点[J]. 中国科学(D辑):地球科学,2020,45(5):1676-1705.
Liu Qianghu, Zhu Hongtao, Du Xiaofeng, et al. Development and hotspots of sedimentary response of glutenite in the offshore Bohai Bay Basin[J]. Science China (Seri. D): Earth Science, 2020, 45(5): 1676-1705. |
[2] |
王鑫,林承焰,马存飞,等. 东营凹陷北部陡坡带利563区块沙四上亚段砂砾岩扇体沉积特征及沉积模式[J]. 吉林大学学报(地球科学版),2020,50(3):705-720.
Wang Xin, Lin Chengyan, Ma Cunfei, et al. Sedimentary characteristics and sedimentary model of glutenite fans in upper Es4 in L563 area, north steep slope of Dongying Depression[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3): 705-720. |
[3] |
孔凡仙. 东营凹陷北带砂砾岩扇体勘探技术与实践[J]. 石油学报,2000,21(5):27-31.
Kong Fanxian. Exploration technique and practice of sandy-conglomeratic fans in the northern part of Dongying Depression[J]. Acta Petrolei Sinica, 2000, 21(5): 27-31. |
[4] |
胡阳,刘惠民,郝雪峰. 断陷湖盆陡坡带砂砾岩油藏特征及控制因素:以东营凹陷古近系为例[J]. 地质论评,2019,65(增刊1):151-152.
Hu Yang, Liu Huimin, Hao Xuefeng. Characteristics and controlling factors of glutenite reservoir in steep slope zone of faulted lacustrine basin: A case study of Paleogene in Dongying Depression[J]. Geological Review, 2019, 65(Suppl. 1): 151-152. |
[5] |
Dodd T J H, Graham Leslie A, Gillespie M R, et al. Deep to shallow-marine sedimentology and impact of volcanism within the Middle Triassic palaeo-tethyan Semantan Basin, Singapore[J]. Journal of Asian Earth Sciences, 2020, 196: 104371. |
[6] |
Niu X B, Yang T, Cao Y C, et al. Characteristics and formation mechanisms of gravity-flow deposits in a lacustrine depression basin: Examples from the Late Triassic chang 7 oil member of the Yanchang Formation, Ordos Basin, central China[J]. Marine and Petroleum Geology, 2023, 148: 106048. |
[7] |
朱筱敏,陈贺贺,谈明轩,等. 从太平洋到喜马拉雅的沉积学新航程:21届国际沉积学大会研究热点分析[J]. 沉积学报,2023,41(1):126-149.
Zhu Xiaomin, Chen Hehe, Tan Mingxuan, et al. A new journey in sedimentology from the Pacific to the Himalayas: Analysis of research hotpots from the 21st International Sedimentological Congress[J]. Acta Sedimentologica Sinica, 2023, 41(1): 126-149. |
[8] |
解强旺,王艳忠,操应长,等. 东营凹陷陡坡带盐斜229地区沙四上亚段砂砾岩油藏成藏控制因素[J]. 中南大学学报(自然科学版),2019,50(7):1626-1636.
Xie Qiangwang, Wang Yanzhong, Cao Yingchang, et al. Control factors on the hydrocarbon accumulation of the Es4s reservoirs in Yanxie 229 area, Dongying Sag[J]. Journal of Central South University (Science and Technology), 2019, 50(7): 1626-1636. |
[9] |
Kra K L, Qiu L W, Yang Y Q, et al. Sedimentological and diagenetic impacts on sublacustrine fan glutenites reservoir quality: An example of the Paleogene Shahejie Formation (Es4s member) in the Dongying Depression, Bohai Bay Basin (East China)[J]. Sedimentary Geology, 2022, 427: 106047. |
[10] |
Fawad N, Liu T X, Fan D D, et al. Sequence stratigraphic divisions and correlation of the middle sub-member of Eocene Shahejie Formation in the Bonan Sag of Bohai Bay Basin (China): Implication for facies and reservoir heterogeneities[J]. Geoenergy Science and Engineering, 2023, 225: 211622. |
[11] |
徐长贵,于海波,王军,等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25-38.
Xu Changgui, Yu Haibo, Wang Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38. |
[12] |
李国欣,覃建华,鲜成钢,等. 致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J]. 石油勘探与开发,2020,47(6):1185-1197.
Li Guoxin, Qin Jianhua, Xian Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development: A case study of the Mahu oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1185-1197. |
[13] |
邓继新,柴康伟,宋连腾,等. 差异性成岩过程对百口泉组砂砾岩岩石物理特征的影响[J]. 地球物理学报,2022,65(11):4448-4459.
Deng Jixin, Chai Kangwei, Song Lianteng, et al. The influence of diagenetic evolution on rock physical properties of glutenite of Baikouquan Formation[J]. Chinese Journal of Geophysics, 2022, 65(11): 4448-4459. |
[14] |
高阳. 准噶尔盆地玛湖凹陷砂砾岩储层物性分类及控制因素[J]. 成都理工大学学报(自然科学版),2022,49(5):542-551,560.
Gao Yang. Physical property classification and controlling factors of glutenite reservoir in Mahu Sag, Junggar Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 542-551, 560. |
[15] |
韩宏伟,崔红庄,林松辉,等. 东营凹陷北部陡坡带砂砾岩扇体地震地质特征[J]. 特种油气藏,2003,10(4):28-30.
Han Hongwei, Cui Hongzhuang, Lin Songhui, et al. Seismic geology of glutenite fan in the north actic region of Dongying Sag[J]. Special Oil and Gas Reservoirs, 2003, 10(4): 28-30. |
[16] |
Hori K, Nagasawa S, Sato Y, et al. Response of a coarse grained, fluvial to coastal depositional system to glacioeustatic sealevel fluctuation since the Last Glacial Maximum: An Example from the Tenryu River, Japan[J]. Journal of Sedimentary Research, 2017, 87(2): 133-151. |
[17] |
周晓光,黄晓波,王启明,等. 渤海海域石南陡坡带多期砂砾岩扇体识别与展布特征[J]. 东北石油大学学报,2020,44(2):46-55.
Zhou Xiaoguang, Huang Xiaobo, Wang Qiming, et al. Identification and description of the multi-stage glutenite fan body in Shinan steep slope zone, Bohai Sea[J]. Journal of Northeast Petroleum University, 2020, 44(2): 46-55. |
[18] |
胡鑫,邹红亮,胡正舟,等. 扇三角洲砂砾岩储层特征及主控因素:以准噶尔盆地东道海子凹陷东斜坡二叠系上乌尔禾组为例[J]. 东北石油大学学报,2021,45(6):15-26.
Hu Xin, Zou Hongliang, Hu Zhengzhou, et al. Reservoir characteristics and main controlling factors of glutenite reservoir in fan dalta glutenite: A case study of the Upper Urho Formation of Permian in the east slope of Dongdaohaizi Sag, Junggar Basin[J]. Journal of Northeast Petroleum University, 2021, 45(6): 15-26. |
[19] |
雷蕾,韩宏伟,于景强. 近岸水下扇沉积样式及地震响应特征新认识[J]. 石油地球物理勘探,2019,54(5):1151-1158.
Lei Lei, Han Hongwei, Yu Jingqiang. New understandings of near-shore subaqueous fan sedimentary styles and its seismic responses[J]. Oil Geophysical Prospecting, 2019, 54(5): 1151-1158. |
[20] |
杜猛,向勇,贾宁洪,等. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏,2021,33(5):120-131.
Du Meng, Xiang Yong, Jia Ninghong, et al. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag[J]. Lithologic Reservoirs, 2021, 33(5): 120-131. |
[21] |
吕复苏,黄小平,任涛. 地震属性信息在砂砾岩油藏开发中的应用:以克拉玛依油田上二叠统上乌尔禾组油藏为例[J]. 新疆石油地质,2003,24(4):310-312.
Fusu Lü, Huang Xiaoping, Ren Tao. Application of seismic attribute information in glutenite reservoir development-An example of Wuerhe reservoir of Upper Permian in Karamay oilfield[J]. Xinjiang Petroleum Geology, 2003, 24(4): 310-312. |
[22] |
邢文军,吴开龙,吴鑫,等. 储层砂岩宽频段地震岩石物理特征的实验研究[J]. 地球物理学进展,2018,33(4):1609-1616.
Xing Wenjun, Wu Kailong, Wu Xin, et al. Multi-frequency laboratory measurement of rock physics property on sandstone[J]. Progress in Geophysics, 2018, 33(4): 1609-1616. |
[23] |
Müller T M, Gurevich B, Lebedev M. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks: A review[J]. Geophysics, 2010, 75(5): 75A147-75A164. |
[24] |
Pride S R, Berryman J G, Harris J M. Seismic attenuation due to wave-induced flow[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1): B01201. |
[25] |
Zhang L, Ba J, Carcione J M. Wave propagation in Infinituple-Porosity media[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(4): e2020JB021266. |
[26] |
Zhang L, Ba J, Carcione J M, et al. Seismic wave propagation in partially saturated rocks with a fractal distribution of fluid-patch size[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): e2021JB023809. |
[27] |
Gregory A R. Fluid saturation effects on dynamic elastic properties of sedimentary rocks[J]. Geophysics, 1976, 41(5): 895-921. |
[28] |
Domenico S N. Effect of brine‐gas mixture on velocity in an unconsolidated sand reservoir[J]. Geophysics, 1976, 41(5): 882-894. |
[29] |
Toksöz M N, Johnston D H, Timur A. Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements[J]. Geophysics, 1979, 44(4): 681-690. |
[30] |
King M S, Marsden J R, Dennis J W. Biot dispersion for P- and S-wave velocities in partially and fully saturated sandstones[J]. Geophysical Prospecting, 2000, 48(6): 1075-1089. |
[31] |
Gassmann F. Über die elastizität poröser medien, Vier der Natur[J]. Gesellshaft in Zurich, 1951, 96: 1-23. |
[32] |
Lebedev M, Toms-Stewart J, Clennell B, et al. Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities[J]. The Leading Edge, 2009, 28(1): 24-27. |
[33] |
Spencer J W. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B3): 1803-1812. |
[34] |
Batzle M L, Han D H, Hofmann R. Fluid mobility and frequency-dependent seismic velocity:Direct measurements[J]. Geophysics, 2006, 71(1): N1-N9. |
[35] |
Mikhaltsevitch V, Lebedev M, Gurevich B. A laboratory study of elastic and anelastic properties of Savonnieres limestone[C]//Proceedings of the 76th EAGE Conference & Exhibition. Amsterdam, Netherlands: European Association of Geoscientists and Engineers, 2014: 1-5. |
[36] |
Subramaniyan S, Quintal B, Madonna C, et al. Laboratory-based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(11): 7526-7535. |
[37] |
Pimienta L, Fortin J, Guéguen Y. Experimental study of Young’s modulus dispersion and attenuation in fully saturated sandstones[J]. Geophysics, 2015, 80(5): L57-L72. |
[38] |
未晛,王尚旭,赵建国,等. 含流体砂岩地震波频散实验研究[J]. 地球物理学报,2015,58(9):3380-3388.
Wei Xian, Wang Shangxu, Zhao Jianguo, et al. Laboratory study of velocity dispersion of the seismic wave in fluid-saturated sandstones[J]. Chinese Journal of Geophysics, 2015, 58(9): 3380-3388. |
[39] |
Sun C, Tang G Y, Fortin J, et al. Dispersion and attenuation of elastic wave velocities: Impact of microstructure heterogeneity and local measurements[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB020132. |
[40] |
Sun C, Fortin J, Borgomano J V M, et al. Influence of fluid distribution on seismic dispersion and attenuation in partially saturated limestone[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023867. |
[41] |
Borgomano J V M, Gallagher A, Sun C, et al. An apparatus to measure elastic dispersion and attenuation using hydrostatic- and axial-stress oscillations under undrained conditions[J]. Review of Scientific Instruments, 2020, 91(3): 034502. |
[42] |
Mavko G, Mukerji T, Dvorkin J. The rock physics handbook: Tools for seismic analysis of porous media[M]. Cambridge: Cambridge University Press, 2009. |
[43] |
Avseth P, Jørstad A, van Wijngaarden A J, et al. Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones[J]. The Leading Edge, 2009, 28(1): 98-108. |
[44] |
Dillon L, Schwedersky G, Vásquez G, et al. A multiscale DHI elastic attributes evaluation[J]. The Leading Edge, 2003, 22(10): 1024-1029. |
[45] |
邓继新,周浩,王欢,等. 基于储层砂岩微观孔隙结构特征的弹性波频散响应分析[J]. 地球物理学报,2015,58(9):3389-3400.
Deng Jixin, Zhou Hao, Wang Huan, et al. The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves[J]. Chinese Journal of Geophysics, 2015, 58(9): 3389-3400. |
[46] |
Duan C S, Deng J X, Li Y, et al. Effect of pore structure on the dispersion and attenuation of fluid-saturated tight sandstone[J]. Journal of Geophysics and Engineering, 2018, 15(2): 449-460. |
[47] |
Sun Y Y, Gurevich B. Modeling the effect of pressure on the moduli dispersion in fluid-saturated rocks[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2019JB019297. |
[48] |
Gurevich B, Makarynska D, de Paula O B, et al. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks[J]. Geophysics, 2010, 75(6): N109-N120. |
[49] |
印兴耀,张世鑫,张峰. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究[J]. 地球物理学报,2013,56(7):2378-2390.
Yin Xingyao, Zhang Shixin, Zhang Feng. Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification[J]. Chinese Journal of Geophysics, 2013, 56(7): 2378-2390. |