[1] Montañez I P, Tabor N J, Niemeier D, et al. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation[J]. Science, 2007, 315(5808): 87-91
[2] 孙枢,王成善. "深时"(Deep Time)研究与沉积学[J]. 沉积学报,2009,27(5):792-810.

Sun Su, Wang Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 792-810.
[3] Parrish J T, Soreghan G S. Sedimentary geology and the future of paleoclimate studies[J]. The Sedimentary Record, 2013, 11: 4-10.
[4] NRC. Understanding Earth’s deep past: Lessons for our climate future[M]. Washington, D. C.: The National Academies Press, 2011: 1-208.
[5] 王成善,王天天,陈曦,等. 深时古气候对未来气候变化的启示[J]. 地学前缘,2017,24(1):1-17.

Wang Chengshan, Wang Tiantian, Chen Xi, et al. Paleoclimate implications for future climate change[J]. Earth Science Frontiers, 2017, 24(1): 1-17.
[6] 杨江海,马严.源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

Yang Jianghai, Ma Yan. Paleoclimate perspectives of source- to-sink sedimentary processes[J]. Earth Science, 2017, 42(11): 1910-1921.
[7] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth[J]. Science, 1998, 281(5381): 1342-1246.
[8] Klages J P, Salzmann U, Bickert T, et al. Temperate rainforests near the South Pole during peak Cretaceous warmth[J]. Nature, 2020, 580(7801): 81-86.
[9] Robert C, Kennett J P. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence[J]. Geology, 1994, 22(3): 211-214.
[10] Weijers J W H, Schouten S, Sluijs A, et al. Warm arctic continents during the Palaeocene-Eocene thermal maximum[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 230-238.
[11] Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the Eocene-Oligocene climate transition[J]. Science, 2009, 323(5918): 1187-1190.
[12] Robert C, Kennett J P. Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion: Clay mineral and oxygen isotope evidence[J]. Geology, 1997, 25(7): 587-590.
[13] Montañez I P, Poulsen C J. The Late Paleozoic Ice Age: An evolving paradigm[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 629-656.
[14] Fielding C R, Frank T D, Birgenheier L P, et al. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society, 2008, 165(1): 129-140.
[15] Isbell J L, Henry L C, Gulbranson E L, et al. Glacial paradoxes during the Late Paleozoic Ice Age: Evaluating the equilibrium line altitude as a control on glaciation[J]. Gondwana Research, 2012, 22(1): 1-19.
[16] Yang J H, Cawood P A, Du Y S. Voluminous silicic eruptions during Late Permian Emeishan igneous province and link to climate cooling[J]. Earth and Planetary Science Letters, 2015, 432: 166-175.
[17] Soreghan G S, Soreghan M J, Heavens N G. Explosive volcanism as a key driver of the Late Paleozoic Ice Age[J]. Geology, 2019, 47(7): 600-604.
[18] Yang J H, Cawood P A, Du Y S, et al. Early Wuchiapingian cooling linked to Emeishan basaltic weathering?[J]. Earth and Planetary Science Letters, 2018, 492: 102-111.
[19] McKenzie N R, Horton B K, Loomis S E, et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability[J]. Science, 2016, 352(6284): 444-447.
[20] Metcalfe I, Crowley J L, Nicoll R S, et al. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana[J]. Gondwana Research, 2015, 28(1): 61-81.
[21] Garbelli C, Shen S Z, Immenhauser A, et al. Timing of Early and Middle Permian deglaciation of the southern hemisphere: Brachiopod-based 87Sr/86Sr calibration[J]. Earth and Planetary Science Letters, 2019, 516: 122-135.
[22] Isbell J L, Koch Z J, Szablewski G M, et al. Permian glacigenic deposits in the Transantarctic Mountains, Antarctica[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Boulder, America: Geological Society of America, 2008: 59-70.
[23] Isbell J L, Cole D I, Catuneanu O. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Boulder, America: Geological Society of America, 2008: 71-82.
[24] Fielding C R, Frank T D, Isbell J L. The Late Paleozoic Ice Age—A review of current understanding and synthesis of global climate patterns[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Boulder, America: Geological Society of America, 2008: 343-354.
[25] Angiolini L, Jadoul F, Leng M J, et al. How cold were the Early Permian glacial tropics? Testing sea-surface temperature using the oxygen isotope composition of rigorously screened brachiopod shells[J]. Journal of the Geological Society, 2009, 166(5): 933-945.
[26] Grossman E L, Yancey T E, Jones T E, et al. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 222-233.
[27] Korte C, Jasper T, Kozur H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224(4): 333-351.
[28] Korte C, Jones P J, Brand U, et al. Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 269(1/2): 1-16.
[29] Chen B, Joachimski M M, Shen S Z, et al. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited[J]. Gondwana Research, 2013, 24(7): 77-89.
[30] Beard J A, Ivany L C, Runnegar B. Gradients in seasonality and seawater oxygen isotopic composition along the Early Permian Gondwanan coast, SE Australia[J]. Earth and Planetary Science Letters, 2015, 425: 219-231.
[31] Wang W Q, Garbelli C, Zhang F F, et al. A high-resolution Middle to Late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shells[J]. Earth and Planetary Science Letters, 2020, 540: 116245.
[32] Tabor N J, DiMichele W A, Montañez I P, et al. Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea[J]. International Journal of Coal Geology, 2013, 119: 177-186.
[33] Goddéris Y, Donnadieu Y, Carretier S, et al. Onset and ending of the Late Palaeozoic ice age triggered by tectonically paced rock weathering[J]. Nature Geoscience, 2017, 10(5): 382-386.
[34] Yang J H, Cawood P A, Du Y S, et al. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low- paleolatitude sedimentary records[J]. Geology, 2014, 42(10): 835-838.
[35] Yang J H, Cawood P A, Du Y S, et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. GSA Bulletin, 2016, 128(5/6): 739-751.
[36] Yang J H, Du Y S. Weathering geochemistry and palaeoclimate implication of the Early Permian mudstones from eastern Henan province, North China[J]. Journal of Palaeogeography, 2017, 6(4): 370-380.
[37] Yang J H, Cawood P A, Montañez I P, et al. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition[J]. Earth and Planetary Science Letters, 2020, 534: 116074.
[38] Torsvik T H, van der Voo R, Doubrovine P V, et al. Deep mantle structure as a reference frame for movements in and on the Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(24): 8735-8740.
[39] Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere?[J]. Geology, 2013, 41(8): 903-906.
[40] Embleton B J J, McElhinny M W, Ma X H, et al. Permo-Triassic magnetostratigraphy in China: The type section near Taiyuan, Shanxi province, North China[J]. Geophysical Journal International, 1996, 126(2): 382-388.
[41] 朱鸿,杨关秀,盛阿兴. 河南禹州大风口剖面二叠纪地层古地磁研究[J]. 地质学报,1996,70(2):121-128.

Zhu Hong, Yang Guanxiu, Sheng Axing. A study on palaeomagnetism of Permian strata in the Dafengkou section, Yuzhou, Henan province[J]. Acta Geologica Sinica, 1996, 70(2): 121-128.
[42] Huang B C, Yan Y G, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews, 2018, 186: 8-36.
[43] 张泓. 山西大宁盆地晚古生代煤系岩石地层划分与对比[J]. 地层学杂志,1989,13(4):279-289.

Zhang Hong. Division and correlation of the Permo-Carboniferous coal-bearing lithostratigraphy in Datong-Ningwu Basin, Shanxi province[J]. Journal of Stratigraphy, 1989, 13(4): 279-289.
[44] 裴放. 河南省华北型石炭—二叠纪地层多重划分与对比[J]. 河南地质,1998,16(4):273-280.

Pei Fang. North China type Permo-Carboniferous multiple stratigraphic division and correlation in Henan province[J]. Henan Geology, 1998, 16(4): 273-280.
[45] 王鸿桢,楚旭春,刘本培,等. 中国古地理图集[M]. 北京:地图出版社,1985:1-283.

Wang Hongzhen, Chu Xuchun, Liu Benpei, et al. Atlas of the palaeogeography of China[M]. Beijing: Cartographic Publishing House, 1985: 1-283.
[46] 王志浩,祁玉平. 我国北方石炭—二叠系牙形刺序列再认识[J]. 微体古生物学报,2003,20(3):225-243.

Wang Zhihao, Qi Yuping. Review of Carboniferous-Permian conodont biostratigraphy in North China[J]. Acta Micropalaeontologica Sinica, 2003, 20(3): 225-243.
[47] 万世禄,丁惠. 华北地台石炭、二叠纪牙形石研究新发现及其地质意义[J]. 煤炭学报,1987(1):13-16.

Wan Shilu, Ding Hui. New discovery in the study of Permo-Carboniferous conodonts in North China Platform and its geological significance[J]. Journal of China Coal Society, 1987(1): 13-16.
[48] Wang Y, Yang J, Ma R, et al. Age constraint on the Lower Taiyuan Formation in southern North China and its paleogeographic implication[J]. submitted, 2020.
[49] 张泓,沈光隆,何宗莲. 华北板块晚古生代古气候变化对聚煤作用的控制[J]. 地质学报,1999,73(2):131-139.

Zhang Hong, Shen Guanglong, He Zonglian. Control of palaeoclimatic change on Late Palaeozoic coal accumulation of the North China Plate[J]. Acta Geologica Sinica, 1999, 73(2): 131-139.
[50] 钟蓉,孙善平,付泽明. 山东及邻区晚石炭世-早二叠世火山事件沉积及地层对比[J]. 地质学报,1996,70(2):142-152.

Zhong Rong, Sun Shanping, Fu Zeming. Volcanic event deposits and stratigraphic correlation of the Late Carboniferous-Early Permian in Shangdong and adjacent regions[J]. Acta Geologica Sinica, 1996, 70(2): 142-152.
[51] 李洪颜,徐义刚,黄小龙,等. 华北克拉通北缘晚古生代活化:山西宁武—静乐盆地上石炭统太原组碎屑锆石U-Pb测年及Hf同位素证据[J]. 科学通报,2009,54(5):632-640.

Li Hongyan, Xu Yigang, Huang Xiaolong, et al. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle Basin[J]. Chinese Science Bulletin, 2009, 54(5): 632-640.
[52] 马收先,李增学,吕大炜. 南华北石炭—二叠系陆表海层序古地理演化[J]. 沉积学报,2010,28(3):497-508.

Ma Shouxian, Li Zengxue, Dawei Lü. Sequence paleogeographical evolution of epicontinental deposit of Permo-Carboniferous in southern North China[J]. Acta Sedimentologica Sinica, 2010, 28(3): 497-508.
[53] Zhu X Q, Zhu W B, Ge R F, et al. Late Paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth[J]. Gondwana Research, 2014, 25(1): 383-400.
[54] 周安朝,贾炳文,马美玲,等. 华北板块北缘晚古生代火山事件沉积的全序列及其主要特征[J]. 地质论评,2001,47(2):175-183.

Zhou Anchao, Jia Bingwen, Ma Meiling, et al. The whole sequences of volcanic event deposits on the north margin of the North China Plate and their features[J]. Geological Review, 2001, 47(2): 175-183.
[55] 张开均. 华北板块东缘晚古生代火山活动及其大地构造含义[J]. 中国煤田地质,1998,10(3):10-11,20.

Zhang Kaijun. Late andesitic volcanism of Late Palacozoic Era along the eastern margin of North China Plate and its tectonic implications[J]. Coal Geology of China, 1998, 10: 10-11, 20.
[56] 宋俊俊,宋慧波,胡斌. 豫西北太原组的时代:来自䗴类化石的证据[J]. 微体古生物学报,2014,31(2):190-204.

Song Junjun, Song Huibo, Hu Bin. Geologic age of the Taiyuan Formation in northwest Henan province: Evidences from fusulinids (foraminifera)[J]. Acta Micropalaeontologica Sinica, 2014, 31(2): 190-204.
[57] 高莲凤,丁惠,万晓樵. 豫淮盆地太原组顶部斯威特刺(Sweetognathus)种的分类修正及其地层意义[J]. 微体古生物学报,2005,22(4):370-382.

Gao Lianfeng, Ding Hui, Wan Xiaoqiao. Taxonomic revision of conodont Sweetognathus species in the uppermost Taiyuan Formation, Yuhuai Basin and its significance[J]. Acta Micropalaeontologica Sinica, 2005, 22(4): 370-382.
[58] 裴放. 河南省华北型石炭纪—二叠纪䗴和牙形石生物地层[J]. 地层学杂志,2004,28(4):344-353.

Pei Fang. The North China type Permo-Carboniferous fusulinid and conodont biostratigraphic units of Henan province[J]. Journal of Stratigraphy, 1998, 28(4): 344-353.
[59] 沈树忠,张华,张义春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):160-193.

Shen Shuzhong, Zhang Hua, Zhang Yicun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China: Earth Sciences, 2019, 49(1): 160-193.
[60] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[61] 杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5):902-910.

Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 902-910.
[62] Clift P D, Hodges K V, Heslop D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12): 875-880.
[63] Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.
[64] Nesbitt H W, Young G M. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy[J]. Sedimentology, 1996, 43(2): 341-358.
[65] Nesbitt H W, Fedo C M, Young G M. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and mud[J]. The Journal of Geology, 1997, 105(2): 173-191.
[66] Garzanti E, Padoan M, Setti M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(2): 292-316.
[67] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Boulder, America: Geological Society of America, 1993: 21-40.
[68] Govin A, Holzwarth U, Heslop D, et al. Distribution of major elements in Atlantic surface sediments (36°N-49°S): Imprint of terrigenous input and continental weathering[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(1): Q01013.
[69] Buggle B, Glaser B, Hambach U, et al. An evaluation of geochemical weathering indices in loess-paleosol studies[J]. Quaternary International, 2011, 240(1/2): 12-21.
[70] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[71] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
[72] Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504.
[73] Gaillardet J, Dupré B, Allegrè C J. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?[J]. Geochimica et Cosmochimica Acta, 1999, 63(23/24): 4037-4051.
[74] Rasmussen C, Brantley S, deB. Richter D,et al. Strong climate and tectonic control on plagioclase weathering in granitic terrain[J]. Earth and Planetary Science Letters, 2011, 301(3/4): 521-530.
[75] Tabor N J, Poulsen C J. Palaeoclimate across the Late Pennsylvanian-Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 293-310.
[76] Tabor N J, Montanez I P, Scotese C R, et al. Paleosol archives of environmental and climatic history in paleotropical western Pangea during the Latest Pennsylvanian through Early Permian[M]//Fielding C R, Frank T D, Isbell J I. Resolving the Late Paleozoic ice age in time and space. Boulder, America: Geological Society of America, 2008: 291-303.
[77] Michel L A, Tabor N J, Montañez I P, et al. Chronostratigraphy and paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous-Permian boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 118-131.
[78] Kessler J L P, Soreghan G S, Wacker H J. Equatorial aridity in western Pangea: Lower Permian loessite and dolomitic paleosols in northeastern New Mexico, U.S.A.[J]. Journal of Sedimentary Research, 2001, 71(5): 817-832.
[79] Stollhofen H, Werner M, Stanistreet I G, et al. Single-zircon U-Pb dating of Carboniferous-Permian tuffs, Namibia, and the intercontinental deglaciation cycle framework[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Boulder, America: Geological Society of America, 2008: 83-96.
[80] Griffis N P, Montanez I P, Mundil R, et al. Coupled stratigraphic and U-Pb zircon age constraints on the Late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana[J]. Geology, 2019, 47(12): 1146-1150.
[81] Griffis N P, Mundil R, Montañez I P, et al. A new stratigraphic framework built on U-Pb single-zircon TIMS ages and implications for the timing of the penultimate icehouse (Paraná Basin, Brazil)[J]. GSA Bulletin, 2018, 130(5/6): 848-858.
[82] Taboada A C, Neves J P, Weinschütz L C, et al. Eurydesma-Lyonia fauna (Early Permian) from the Itararé group, Paraná Basin (Brazil): A paleobiogeographic W-E trans-Gondwanan marine connection[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 431-454.
[83] Riebe C S, Kirchner J W, Finkel R C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 547-562.
[84] Ferrier K L, Riebe C S, Hahm W J. Testing for supply-limited and kinetic-limited chemical erosion in field measurements of regolith production and chemical depletion[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2270-2285.
[85] Xu Y G, Wei X, Luo Z Y, et al. The Early Permian Tarim large igneous province: Main characteristics and a plume incubation model[J]. Lithos, 2014, 204: 20-35.
[86] Yang S F, Chen H L, Li Z L, et al. Early Permian Tarim Large Igneous province in northwest China[J]. Science China Earth Sciences, 2013, 56(12): 2015-2016.
[87] Shellnutt J G. The Panjal traps[M]//Sensarma S, Storey B C. Large igneous provinces from Gondwana and adjacent regions. London: The Geological Society of London, 2018: 59-86.
[88] Shellnutt J G, Bhat G M, Brookfield M E, et al. No link between the Panjal Traps (Kashmir) and the Late Permian[J]. Geophysical Research Letters, 2011, 38(19): L19308.