[1] Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 26-57.
[2] Reinhard C T, Planavsky N J, Robbins L J, et al. Proterozoic ocean redox and biogeochemical stasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(14): 5357-5362.
[3] 杜远生,龚一鸣,张哲,等. 南华海泥盆纪烃源岩的古氧相和缺氧环境模式:以广西中、上泥盆统为例[J]. 古地理学报,2009,11(1):28-36.

Du Yuansheng, Gong Yiming, Zhang Zhe, et al. Paleoxygenation facies and oxygen-deficient environmental model of the Devonian source rocks from southern South China Sea: An example from the Middle and Upper Devonian of Guangxi[J]. Journal of Palaeogeography, 2009, 11(1): 28-36.
[4] 董志国,张连昌,王长乐,等. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题[J]. 矿床地质,2020,39(2):237-255.

Dong Zhiguo, Zhang Lianchang, Wang Changle, et al. Progress and problems in understanding sedimentary manganese carbonate metallogenesis[J]. Mineral Deposits, 2020, 39(2): 237-255.
[5] 王成善,胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,2005,12(2):11-21.

Wang Chengshan, Hu Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21.
[6] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[7] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88.

Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88.
[8] 樊奇,樊太亮,李一凡,等. 塔里木地台北缘早寒武世古海洋氧化—还原环境与优质海相烃源岩发育模式[J]. 地球科学,2020,45(1):285-302.

Fan Qi, Fan Tailiang, Li Yifan, et al. Paleo-environments and development pattern of high-quality marine source rocks of the Early Cambrian, northern Tarim Platform[J]. Earth Science, 2020, 45(1): 285-302.
[9] Mansour A, Wagreich M, Gentzis T, et al. Depositional and organic carbon-controlled regimes during the Coniacian-Santonian event: First results from the southern Tethys (Egypt)[J]. Marine and Petroleum Geology, 2020, 115: 104285.
[10] Berner R A. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615.
[11] Leventhal J S. Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1207-1211.
[12] 杨殿忠,夏斌,吴国干. 吐哈盆地西南部砂岩铀矿层间氧化带发育特征[J]. 中国科学(D辑):地球科学,2003,33(7):658-664.

Yang Dianzhong, Xia Bin, Wu Guogan. Development characteristics of interlayer oxidation zone of sandstone uranium deposits in southwestern Turpan-Hami Basin[J]. Science China (Seri. D): Earth Sciences, 2003, 33(7): 658-664.
[13] 宋慧波,毕瑜珺,胡斌. 豫西下二叠统太原组遗迹化石与古氧相的响应特征[J]. 古地理学报,2017,19(4):653-662.

Song Huibo, Bi Yujun, Hu Bin. Responding characteristics between ichnofossils and palaeo-oxygen facies in the Lower Permian Taiyuan Formation of western Henan province[J]. Journal of Palaeogeography, 2017, 19(4): 653-662.
[14] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:1-424.

Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 1-424.
[15] 莫东坡,朱丽东,李凤全,等. 浙江曹娥江下游XYC孔色度特征及其全新世环境记录[J]. 古地理学报,2018,20(1):163-174.

Mo Dongpo, Zhu Lidong, Li Fengquan, et al. Chroma characteristics and its Holocene environmental record of borehole XYC in the downstream area of Cao'e River, Zhejiang province[J]. Journal of Palaeogeography, 2018, 20(1): 163-174.
[16] 丁敏,庞奖励,黄春长,等. 全新世黄土—古土壤序列色度特征及气候意义:以关中平原西部梁村剖面为例[J]. 陕西师范大学学报(自然科学版),2010,38(5):92-97.

Ding Min, Pang Jiangli, Huang Chunchang, et al. Chroma characteristics and its climatic significance in Holocene loess-paleosol sequence: A case study of the Holocene Liangcun profile in the western Guanzhong Basin[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2010, 38(5): 92-97.
[17] 万晓樵,刘文灿,李国彪,等. 白垩纪黑色页岩与海水含氧量变化:以西藏南部为例[J]. 中国地质,2003,30(1):36-47.

Wan Xiaoqiao, Liu Wencan, Li Guobiao, et al. Cretaceous black shale and dissolved oxygen content: A case study in southern Tibet[J]. Geology in China, 2003, 30(1): 36-47.
[18] Rhoads D C, Morse J W. Evolutionary and ecologic significance of oxygen‐deficient marine basins[J]. Lethaia, 1971, 4(4): 413-428.
[19] 徐桂荣,王永标,龚淑云,等. 生物与环境的协同进化[M]. 北京:中国地质大学出版社,2005:1-337.

Xu Guirong, Wang Yongbiao, Gong Shuyun, et al. Co-evolution of biology and environment[M]. Beijing: China University of Geosciences Press, 2005: 1-337.
[20] 张立军,赵曌,龚一鸣. 遗迹化石对显生宙5大生物—环境事件的响应[J]. 地球科学,2015,40(2):381-396.

Zhang Lijun, Zhao Zhao, Gong Yiming. Trace fossils as a proxy of the big 5 biotic-and environmental events in the Phanerozoic[J]. Earth Science, 2015, 40(2): 381-396.
[21]
[22] Giannetti A. Influence of climate, sea-level changes and tectonics on ichnoassemblages distribution in a carbonate-dominated, deep-marine environment (Upper Paleocene, Zumaya section)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(1/2): 104-118.
[23] Ekdale A A, Mason T R. Characteristic trace-fossil associations in oxygen-poor sedimentary environments[J]. Geology, 1988, 16(8): 720-723.
[24] 张立军,龚一鸣. 四川龙门山地区下泥盆统平驿铺组的遗迹化石[J]. 古生物学报,2013,52(1):86-95.

Zhang Lijun, Gong Yiming. Ichnocoenosis of the Lower Devonian Pingyipu Formation, Longmen Mountain, Sichuan[J]. Acta Palaeontologica Sinica, 2013, 52(1): 86-95.
[25]
[26]
[27] 牛永斌,单婷婷,董小波,等. 豫西北奥陶系马家沟组遗迹化石及其沉积环境[J]. 沉积学报,2015,33(2):211-225.

Niu Yongbin, Shan Tingting, Dong Xiaobo, et al. Trace fossils and their sedimentary environment of Ordovician Majiagou Formation in the north-west of Henan province[J]. Acta Sedimentologica Sinica, 2015, 33(2): 211-225.
[28] 林治家,陈多福,刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报,2008,27(1):72-80.

Lin Zhijia, Chen Duofu, Liu Qian. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80.
[29] Harris N B, Freeman K H, Pancost R D, et al. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa[J]. AAPG Bulletin, 2004, 88(8): 1163-1184.
[30] 肖飞,包建平,朱翠山,等. 柴达木盆地西部典型油田原油地球化学特征对比[J]. 地球科学与环境学报,2012,34(4):43-52.

Xiao Fei, Bao Jianping, Zhu Cuishan, et al. Comparison of the geochemical characteristics of crude oils from typical oilfields in western Qaidam Basin[J]. Journal of Earch Sciences and Environment, 2012, 34(4): 43-52.
[31] 王炳凯,冯乔,田方正,等. 新疆准噶尔盆地南缘二叠系芦草沟组烃源岩生物标志化合物特征及意义[J]. 地质通报,2017,36(2/3):304-313.

Wang Bingkai, Feng Qiao, Tian Fangzheng, et al. The characteristics and significance of biomarker compounds in the Permian Lucaogou Formation hydrocarbon source rock on the southern margin of the Junggar Basin[J]. Geological Bulletin of China, 2017, 36(2/3): 304-313.
[32] 李红磊,张敏,姜连,等. 利用芳烃参数研究煤系烃源岩中重排藿烷成因[J]. 沉积学报,2016,34(1):191-199.

Li Honglei, Zhang Min, Jiang Lian, et al. Application of aromatics on genesis of rearranged hopanes in coal-bearing source rocks[J]. Acta Sedimentologica Sinica, 2016, 34(1): 191-199.
[33] 马素萍,贺建桥,夏燕青. 油气形成过程中一个最明显的氧化还原反应实例:胡萝卜烷的形成[J]. 沉积学报,2004,22(增刊1):124-128.

Ma Suping, He Jianqiao, Xia Yanqing. An obvious example of redox reaction in the process of oil and gas generation: The formation of carotane[J]. Acta Sedimentologica Sinica, 2004, 22(Suppl.1): 124-128.
[34] 段毅,周世新. 塔里木盆地石炭系烃源岩热模拟实验研究:Ⅱ. 生物标志化合物的组成和演化[J]. 石油与天然气地质,2001,22(1):13-16.

Duan Yi, Zhou Shixin. Study on thermal simulation of Carboniferous source rocks in Tarim Basin: Ⅱ composition and evolution of biomarkers[J]. Oil & Gas Geology, 2001, 22(1): 13-16.
[35] 贾建忠,万晓樵,李国彪,等. 西藏岗巴地区Cenomanian-Turonian界线附近底栖有孔虫古环境指标及其古海洋学意义[J]. 微体古生物学报,2010,27(2):135-143.

Jia Jianzhong, Wan Xiaoqiao, Li Guobiao, et al. Benthic foraminifera as paleoenvironmental indicators and their paleoceanographic significance around the Cenomanian-Turonian boundary in gamba, Tibet[J]. Acta Micropalaeontologica Sinica, 2010, 27(2): 135-143.
[36] 薛力园,丁旋,裴人傑,等. 南海北部陆丰凹陷中新世底栖有孔虫组合与古环境演化研究[J]. 海洋学报,2019,38(3):124-137.

Xue Liyuan, Ding Xuan, Pei Renjie, et al. Miocene paleoenvironmental evolution based on benthic foraminiferal assemblages in the Lufeng Sag, northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(3): 124-137.
[37] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22(8): 719-722.
[38] 陈伟,李璇,曾亮,等. 柴西上干柴沟组中上段介壳微量元素古环境古气候意义[J]. 沉积学报,2019,37(5):992-1005.

Chen Wei, Li Xuan, Zeng Liang, et al. Paleoenvironmental and paleoclimatic significance of trace elements in ostracod shells in the upper-middle section, Upper Ganchaigou Formation, western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2019, 37(5): 992-1005.
[39] Turpen J B, Angell R W. Aspects of molting and calcification in the ostracod heterocypris [J]. The Biological Bulletin, 1971, 140(2): 331-338.
[40] Yang Q C, Jochum K P, Stoll B, et al. Trace element variability in single ostracod valves as a proxy for hydrochemical change in Nam Co, central Tibet, during the Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 225-235.
[41] B?rner N, De Baere B, Akita L G, et al. Stable isotopes and trace elements in modern ostracod shells: Implications for reconstructing past environments on the Tibetan Plateau, China[J]. Journal of Paleolimnology, 2017, 58(2): 191-211.
[42] 蔡青青,闫宝强,王永志. 利用碳酸盐岩的Fe/Mn比值恢复海洋的氧化还原状态[J]. 地质与资源,2019,28(2):160-164.

Cai Qingqing, Yan Baoqiang, Wang Yongzhi. Redox environment restoration of ocean with the Fe/Mn ratio of carbonate rocks[J]. Geology and Resources, 2019, 28(2): 160-164.
[43] 李军,余俊清. 湖相介形类壳体地球化学在环境变化研究中的应用与进展[J]. 湖泊科学,2001,13(4):367-375.

Li Jun, Yu Junqing. Lacustrine ostracodes as environmental change indicators: Application and advance[J]. Journal of Lake Sciences, 2001, 13(4): 367-375.
[44] 张明亮,郭伟,沈俊. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报,2017,36(4):95-106.

Zhang Mingliang, Guo Wei, Shen Jun. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106.
[45] Schoepfer S D, Shen J, Wei H Y, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52.
[46] 倪春华,周小进,王果寿,等. 鄂尔多斯盆地南缘平凉组烃源岩沉积环境与地球化学特征[J]. 石油与天然气地质,2011,32(1):38-46.

Ni Chunhua, Zhou Xiaojin, Wang Guoshou, et al. Sedimentary environment and geochemical characteristics of hydrocarbon source rocks in the Pingliang Formation, southern margin of the Ordos Basin[J]. Oil & Gas Geology, 2011, 32(1): 38-46.
[47] 单玄龙,李吉焱,陈树民,等. 陆相水下火山喷发作用及其对优质烃源岩形成的影响:以松辽盆地徐家围子断陷营城组为例[J]. 中国科学(D辑):地球科学,2014,44(12):2637-2644.

Shan Xuanlong, Li Jiyan, Chen Shumin, et al. Subaquatic volcanic eruptions in continental facies and their influence on high quality source rocks shown by the volcanic rocks of a faulted depression in northeast China[J]. Science China(Seri.D): Earth Sciences, 2014, 44(12): 2637-2644.
[48] 吴绪旭,王张华,何中发. 总硫总有机碳比(TS/TOC)对长江三角洲南部平原沉积环境的指示意义[J]. 古地理学报,2012,14(6):821-828.

Wu Xuxu, Wang Zhanghua, He Zhongfa. Implications of TS/TOC for sedimentary environments of the southern Changjiang delta plain[J]. Journal of Palaeogeography, 2012, 14(6): 821-828.
[49] Ocubalidet S G, Rimmer S M, Conder J A. Redox conditions associated with organic carbon accumulation in the Late Devonian New Albany Shale, west-central Kentucky, Illinois Basin[J]. International Journal of Coal Geology, 2018, 190: 42-55.
[50] Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855-862.
[51] Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
[52] Leventhal J S. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition[J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 133-137.
[53] 李玲玲,于志刚,姚庆祯,等. 长江口海域营养盐的形态和分布特征[J]. 水生态学杂志,2009,2(2):15-20.

Li Lingling, Yu Zhigang, Yao Qingzhen, et al. The distribution and species of nutrient in the Yangtze River Estuary[J]. Journal of Hydroecology, 2009, 2(2): 15-20.
[54] Beil S, Kuhnt W, Holbourn A, et al. Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks[J]. Climate of the Past, 2020, 16(2): 757-782.
[55] Ingall E, Kolowith L, Lyons T, et al. Sediment carbon, nitrogen and phosphorus cycling in an anoxic fjord, Effingham Inlet, British Columbia[J]. American Journal of Science, 2005, 305(3): 240-258.
[56] Kraal P, Slomp C P, de Lange G J. Sedimentary organic carbon to phosphorus ratios as a redox proxy in Quaternary records from the Mediterranean[J]. Chemical Geology, 2010, 277(1/2): 167-177.
[57] Algeo T J, Ingall E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 130-155.
[58] Diaz J, Ingall E, Benitez-Nelson C, et al. Marine polyphosphate: A key player in geologic phosphorus sequestration[J]. Science, 2008, 320(5876): 652-655.
[59] Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/2/3): 181-198.
[60] 黄俊华,罗根明,白晓,等. 浙江煤山P/T之交碳同位素对有机碳埋藏的指示意义[J]. 地球科学:中国地质大学学报,2007,32(6):767-773.

Huang Junhua, Luo Genming, Bai Xiao, et al. The organic fraction of the total carbon burial flux deduced from carbon isotopes across the permo-Triassic boundary at Meishan, Zhejiang province[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(6): 767-773.
[61] Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated–massive–laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
[62] Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032.
[63] 常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.

Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.
[64] Piper D Z, Perkins R B. A modern vs. Permian black shale: The hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
[65] 梅水泉. 岩石化学在湖南前震旦系沉积环境及铀来源研究中的应用[J]. 湖南地质,1988,7(3):25-31,49.

Mei Shuiquan. Application of rock chemistry in the study of presinian sedimentary environment and the source of uranium mineralization in Hunan province[J]. Hunan Geology, 1988, 7(3): 25-31, 49.
[66] Shi L, Feng Q L, Shen J, et al. Proliferation of shallow-water radiolarians coinciding with enhanced oceanic productivity in reducing conditions during the Middle Permian, South China: Evidence from the Gufeng Formation of western Hubei province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 444: 1-14.
[67] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
[68] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[69] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
[70] Scheffler K, Buehmann D, Schwark L. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies–Response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 184-203.
[71] Lu Z L, Jenkyns H C, Rickaby R E M. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events[J]. Geology, 2010, 38(12): 1107-1110.
[72] Zhou X L, Thomas E, Rickaby R E M, et al. I/Ca evidence for Upper ocean deoxygenation during the PETM[J]. Paleoceanography, 2014, 29(10): 964-975.
[73] Waite T J, Truesdale V W, Olafsson J. The distribution of dissolved inorganic iodine in the seas around Iceland[J]. Marine Chemistry, 2006, 101(1/2): 54-67.
[74] Zhou X L, Jenkyns H C, Owens J D, et al. Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian‐Turonian OAE 2[J]. Paleoceanography, 2015, 30(5): 510-526.
[75] Lu Z L, Hoogakker B A A, Hillenbrand C D, et al. Oxygen depletion recorded in Upper waters of the glacial southern ocean[J]. Nature Communications, 2016, 7: 11146.
[76] 尚墨翰,汤冬杰,史晓颖,等. I/(Ca+Mg)作为指示碳酸盐沉积氧化还原条件的重要指标:研究进展与问题评述[J]. 古地理学报,2018,20(4):651-664.

Shang Mohan, Tang Dongjie, Shi Xiaoying, et al. I/(Ca+Mg) as an important redox proxy for carbonate sedimentary environments: Progress and problems[J]. Journal of Palaeogeography, 2018, 20(4): 651-664.
[77] Hardisty D S, Lu Z L, Bekker A, et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate[J]. Earth and Planetary Science Letters, 2017, 463: 159-170.
[78] Olivier N, Boyet M. Rare earth and trace elements of microbialites in Upper Jurassic coral-and sponge-microbialite reefs[J]. Chemical Geology, 2006, 230(1/2): 105-123.
[79] 闫斌,朱祥坤,唐索寒,等. 三峡地区陡山沱早期水体性质的稀土元素和锶同位素制约[J]. 现代地质,2010,24(5):832-839.

Yan Bin, Zhu Xiangkun, Tang Suohan, et al. Characteristics of Sr isotopes and rare earth elements of cap carbonates in Doushantuo Formation in the Three Gorges area[J]. Geoscience, 2010, 24(5): 832-839.
[80] Liu X M, Hardisty D S, Lyons T W, et al. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank[J]. Geochimica et Cosmochimica Acta, 2019, 248: 25-42.
[81] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219.
[82] Wyndham T, McCulloch M, Fallon S, et al. High-resolution coral records of rare earth elements in coastal seawater: Biogeochemical cycling and a new environmental proxy[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2067-2080.
[83] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
[84] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353.
[85] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
[86] 赵思凡,顾尚义,沈洪娟,等. 华南地区南沱冰期海洋氧化还原环境研究:来自贵州松桃南沱组白云岩稀土元素地球化学的指示[J]. 沉积学报,2020,38(6):1140-1151.

Zhao Sifan, Gu Shangyi, Shen Hongjuan, et al. Ocean redox environment in the Nantuo Ice Age of South China: An indication of the rare earth element geochemistry in the dolomites from the Nantuo Formation in Guizhou province[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1140-1151.
[87] Dickson A J, Cohen A S, Coe A L. Continental margin molybdenum isotope signatures from the Early Eocene[J]. Earth and Planetary Science Letters, 2014, 404: 389-395.
[88] Zhou L, Algeo T J, Shen J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234.
[89] Wen H J, Fan H F, Zhang Y X, et al. Reconstruction of Early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 1-16.
[90] Kurzweil F, Wille M, Schoenberg R, et al. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin[J]. Geochimica et Cosmochimica Acta, 2015, 164: 523-542.
[91] Barling J, Arnold G L, Anbar A D. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 447-457.
[92] Poulson R L, Siebert C, McManus J, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.
[93] 高剑峰,凌洪飞,赵葵东. Mo含量和Mo同位素对古海洋氧化还原环境演化的指示作用[J]. 地球学报,2005,26(增刊1):203-204.

Gao Jianfeng, Ling Hongfei, Zhao Kuidong. Mo concentration and Mo isotope as a proxy for oceanic paleoredox conditions[J]. Acta Geoscientica Sinica, 2005, 26(Suppl.1): 203-204.
[94] Siebert C, Kramers J D, Meisel T, et al. PGE, Re-Os, and Mo isotope systematics in Archean and Early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1787-1801.
[95] Partin C A, Bekker A, Planavsky N J, et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369-370: 284-293.
[96] Romaniello S J, Herrmann A D, Anbar A D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy[J]. Chemical Geology, 2013, 362: 305-316.
[97] Kendall B, Brennecka G A, Weyer S, et al. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga[J]. Chemical Geology, 2013, 362: 105-114.
[98] Asael D, Tissot F L H, Reinhard C T, et al. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event[J]. Chemical Geology, 2013, 362: 193-210.
[99] Goto K T, Anbar A D, Gordon G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine 238U/235U isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58.
[100] Andersen M B, Romaniello S, Vance D, et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194.
[101] 徐林刚. 238U/235U分馏及其地质应用[J]. 矿床地质,2014,33(3):497-510.

Xu Lingang. 238U/235U isotope fractionation in nature and its geological applications[J]. Mineral Deposits, 2014, 33(3): 497-510.
[102] Gill B C, Lyons T W, Young S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean[J]. Nature, 2011, 469(7328): 80-83.
[103] McKay J L, Longstaffe F J. Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, western Interior Basin[J]. Sedimentary Geology, 2003, 157(3/4): 175-195.
[104] Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog[J]. Geology, 2010, 38(5): 415-418.
[105] Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193): 1973-1975.
[106] Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 59-83.
[107] Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 484-496.
[108] Kaiho K, Oba M, Fukuda Y, et al. Changes in depth-transect redox conditions spanning the end-Permian mass extinction and their impact on the marine extinction: Evidence from biomarkers and sulfur isotopes[J]. Global and Planetary Change, 2012, 94-95: 20-32.
[109] Sigman D M, Karsh K L, Casciotti K L. Ocean process tracers: Nitrogen isotopes in the ocean[M]//Steele J H, Turekian K K, Thorpe S A. Encyclopedia of ocean sciences. London: Academic, 2009: 4138-4153.
[110] Quan T M, Adigwe E N, Riedinger N, et al. Evaluating nitrogen isotopes as proxies for depositional environmental conditions in shales: Comparing Caney and Woodford shales in the Arkoma Basin, Oklahoma[J]. Chemical Geology, 2013, 360-361: 231-240.
[111] 王丹,朱祥坤,凌洪飞. 氮的生物地球化学循环及氮同位素指标在古海洋环境研究中的应用[J]. 地质学报,2015,89(增刊1):74-76.

Wang Dan, Zhu Xiangkun, Ling Hongfei. The biogeochemical cycle of nitrogen and the application of nitrogen isotope index in the study of paleo-ocean environment[J]. Acta Geologica Sinica, 2015, 89(Suppl.1): 74-76.
[112] Talbot M R. Nitrogen isotopes in palaeolimnology[M]//Last W M, Smol J P. Tracking environmental change using lake sediments. Dordrecht: Springer, 2002: 401-439.
[113] 陈践发,徐学敏,师生宝. 不同沉积环境下原油氮同位素的地球化学特征[J]. 中国石油大学学报(自然科学版),2015,39(5):1-6.

Chen Jianfa, Xu Xuemin, Shi Shengbao. Geochemical characteristics of nitrogen isotope of crude oils in different depositional environments[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(5): 1-6.
[114] Robinson R S, Kienast M, Albuquerque A L, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography, 2012, 27(4): PA4203.
[115] Wanner C, Eggenberger U, Kurz D, et al. A chromate-contaminated site in southern Switzerland-Part 1: Site characterization and the use of Cr isotopes to delineate fate and transport[J]. Applied Geochemistry, 2012, 27(3): 644-654.
[116] Ellis A S, Johnson T M, Bullen T D. Chromium isotopes and the fate of hexavalent chromium in the environment[J]. Science, 2002, 295(5562): 2060-2062.
[117] Lee T, Tera F. The meteoritic chromium isotopic composition and limits for radioactive 53Mn in the early solar system[J]. Geochimica et Cosmochimica Acta, 1986, 50(2): 199-206.
[118] Bain D J, Bullen T D. Chromium isotope fractionation during oxidation of Cr(III) by manganese oxides[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): A212.
[119] Basu A, Johnson T M. Determination of hexavalent chromium reduction using Cr stable isotopes: Isotopic fractionation factors for permeable reactive barrier materials[J]. Environmental Science & Technology, 2012, 46(10): 5353-5360.
[120]
[121] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
[122] 胡永亮,王伟,周传明. 沉积地层中的黄铁矿形态及同位素特征初探:以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报,2020,38(1):138-149.

Hu Yongliang, Wang Wei, Zhou Chuanming. Morphologic and isotopic characteristics of sedimentary pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China[J]. Acta Sedimentologica Sinica, 2020, 38(1): 138-149.
[123] Muramoto J A, Honjo S, Fry B, et al. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(2): S1151-S1187.
[124] Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
[125] Ding H, Yao S P, Chen J. Authigenic pyrite formation and reoxidation as an indicator of an unsteady-state redox sedimentary environment: Evidence from the intertidal mangrove sediments of Hainan Island, China[J]. Continental Shelf Research, 2014, 78: 85-99.
[126] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
[127] Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1): 1-23.
[128] Lyons T W, Severmann S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5698-5722.
[129] M?rz C, Poulton S W, Beckmann B, et al. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3703-3717.
[130] Poulton S W, Canfield D E. Ferruginous conditions: A dominant feature of the ocean through Earth's History[J]. Elements, 2011, 7(2): 107-112.
[131] 常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展,2011,26(5):475-481.

Chang Huajin, Chu Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5): 475-481.
[132] 常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165.

Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165.
[133] Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. GSA Bulletin, 2010, 122(7/8): 1265-1279.
[134] 张璇,韦恒叶. 湖北秭归吴家坪组—长兴组界线氧化还原条件及其意义[J]. 沉积学报,2020,38(3):476-484.

Zhang Xuan, Wei Hengye. Redox conditions and their implications at the Wujiaping-Changxing Formation boundary in Zigui, Hubei province[J]. Acta Sedimentologica Sinica, 2020, 38(3): 476-484.
[135] Wacey D, Kilburn M R, Saunders M, et al. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping[J]. Geology, 2015, 43(1): 27-30.
[136] Gu X, Heaney P J, Reis F D A A, et al. Deep abiotic weathering of pyrite[J]. Science, 2020, 370(6515): eabb8092.
[137] 韦雪梅,韦恒叶,邱振,等. 广西来宾蓬莱滩剖面G-L界线草莓状黄铁微晶粒径特征及其氧化还原意义[J]. 地质科学,2017,52(1):230-241.

Wei Xuemei, Wei Hengye, Qiu Zhen, et al. Framboidal microcryst size characteristics of pyrite and its redox significance across the G-L boundary in Penglaitan section, Laibin, Guangxi[J]. Chinese Journal of Geology, 2017, 52(1): 230-241.
[138] 李洪星,陆现彩,边立曾,等. 草莓状黄铁矿微晶形态和成分的地质意义:以栖霞组含泥灰岩为例[J]. 矿物学报,2012,32(3):443-448.

Li Hongxing, Lu Xiancai, Bian Lizeng, et al. Geological significance of microcrystalline morphology and composition of framboids pyrite: A case study of marl of Chihsia Formation[J]. Acta Mineralogica Sinica, 2012, 32(3): 443-448.
[139] Wang Q W, Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 1996, 52(2): 99-121.
[140] Ohfuji H, Rickard D. Experimental syntheses of framboids: A review[J]. Earth-Science Reviews, 2005, 71(3/4): 147-170.
[141] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14.
[142] Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1244-1263.