[1] Guo X S, Hu D G, Shu Z G, et al. Exploration, development, and construction in the Fuling national shale gas demonstration area in Chongqing: Progress and prospects[J]. Natural Gas Industry B, 2023, 10(1): 62-72.
[2] Zou C N, Zhao Q, Wang H Y, et al. Principal characteristics of marine shale gas, and the theory and technology of its exploration and development in China[J]. Natural Gas Industry B, 2023, 10(1): 1-13.
[3] Zhang J C, Li Z, Wang D S, et al. Shale gas accumulation patterns in China[J]. Natural Gas Industry B, 2023, 10(1): 14-31.
[4] 程锦翔,邓敏,王正和,等. 康滇古陆西侧早志留世古海洋氧化—还原环境及优质烃源岩发育模式:以盐源地区CYD2井为例[J]. 地质通报,2022,41(10):1813-1828.

Cheng Jinxiang, Deng Min, Wang Zhenghe, et al. Paleo-marine redox conditions and development model of high-quality source rocks of the Early Silurian on the west side of Kangdian oldland: A case study of CYD2 well in Yanyuan area[J]. Geological Bulletin of China, 2022, 41(10): 1813-1828.
[5] 张茜,王剑,余谦,等. 康滇古陆西侧龙马溪组黑色页岩地球化学特征及其地质意义[J]. 沉积与特提斯地质,2017,37(1):97-107.

Zhang Qian, Wang Jian, Yu Qian, et al. Black shales from the Longmaxi Formation in western Xikang-Yunnan ancient land: Geochemistry and geological implications[J]. Sedimentary Geology and Tethyan Geology, 2017, 37(1): 97-107.
[6] Zhang Q, Zhang B, Yu Q, et al. Study on the provenance and tectonic setting of mudstone in the Lower Silurian Longmaxi Formation of the Yanyuan Basin on the western margin of the Yangtze Platform[J]. Minerals, 2023, 13(2): 194.
[7] 王正和,邓敏,程锦翔,等. 康滇古陆西侧断裂及岩浆活动对油气保存条件的影响:以盐源盆地为例[J]. 地球科学,2018,43(10):3616-3624.

Wang Zhenghe, Deng Min, Cheng Jinxiang, et al. Influence of fault and magmatism on oil and gas preservation condition, to the west of Kangdian ancient continent: Taking Yanyuan Basin as an example[J]. Earth Science, 2018, 43(10): 3616-3624.
[8] 刘家铎,张成江,刘显凡,等. 扬子地台西南缘成矿规律及找矿方向[M]. 北京:地质出版社,2004.

Liu Jiaduo, Zhang Chengjiang, Liu Xianfan, et al. Mineralization regulation and exploration evaluation in southwest margin of Yangtze Platform[M]. Beijing: Geological Publishing House, 2004.
[9] 肖荣吾. 康滇大陆古裂谷带特征及其演化[J]. 云南地质,1988,7(3):229-235,237-244.

Xiao Rongwu. The character and evolution of continental paleorift zone in Xikang-Yunnan (Kang-Dian)[J]. Yunnan Geology, 1988, 7(3): 229-235, 237-244.
[10] 张廷山,陈雷,梁兴,等. 昭通国家级页岩气示范区五峰组—龙马溪组页岩气富集地质主控因素[J]. 天然气工业,2023,43(4):93-102.

Zhang Tingshan, Chen Lei, Liang Xing, et al. Geological control factors of shale gas enrichment in the Wufeng-Longmaxi Formation of the Zhaotong national shale gas demonstration area[J]. Natural Gas Industry, 2023, 43(4): 93-102.
[11] 徐进力,邢夏,唐瑞玲,等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试,2019,38(4):394-402.

Xu Jinli, Xing Xia, Tang Ruiling, et al. Determination of 14 Trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402.
[12] Taylor S R, McClennan S M. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publications, 1985.
[13] Sugitani K, Yamashita F, Nagaoka T, et al. Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, western Australia: Evidence for the early evolution of continental crust and hydrothermal alteration[J]. Precambrian Research, 2006, 147(1/2): 124-147.
[14] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
[15] 刘彬,王学求. 长江中下游地区早古生代沉积岩地球化学特征及其构造背景与物源分析[J]. 大地构造与成矿学,2018,42(1):163-176.

Liu Bin, Wang Xueqiu. Geochemistry of Early Paleozoic sedimentary rocks in the middle-lower reaches of the Yangtze River and its constrains on tectonic setting and pro-venance[J]. Geotectonica et Metallogenia, 2018, 42(1): 163-176.
[16] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[17] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[18] Algeo T J, Tribovillard N. Environmental analysis of paleoceano-graphic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
[19] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography and Paleoclimatology, 2006, 21(1): PA1016.
[20] 汤冬杰,史晓颖,赵相宽,等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标:进展、问题与展望[J]. 现代地质,2015,29(1):1-13.

Tang Dongjie, Shi Xiaoying, Zhao Xiangkuan, et al. Mo-U covariation as an important proxy for sedimentary environment redox conditions-progress: Problems and prospects[J]. Geoscience, 2015, 29(1): 1-13.
[21] 张建军,牟传龙,周恳恳,等. 滇西户撒盆地芒棒组砂岩地球化学特征及物源区和构造背景分析[J]. 地质学报,2017,91(5):1083-1096.

Zhang Jianjun, Mou Chuanlong, Zhou Kenken, et al. Geochemical characteristic of sandstones from the Mangbang Formation in the Husa Basin, western Yunnan, and its constraints on provenances and tectonic setting[J]. Acta Geologica Sinica, 2017, 91(5): 1083-1096.
[22] Verma S P, Armstrong-Altrin J S. Geochemical discrimination of siliciclastic sediments from active and passive margin settings[J]. Sedimentary Geology, 2016, 332: 1-12.
[23] Verma S P, Rivera-Gómez M A, Díaz-González L, et al. Multidimensional classification of magma types for altered igneous rocks and application to their tectonomagmatic discrimination and igneous provenance of siliciclastic sediments[J]. Lithos, 2017, 278-281: 321-330.
[24] Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37.
[25] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
[26] Moradi A V, Sarı A, Akkaya P. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for paleoclimate conditions, source-area weathering, provenance and tectonic setting[J]. Sedimentary Geology, 2016, 341: 289-303.
[27] Chen C, Mu C L, Zhou K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175.
[28] Li Y F, Zhang T W, Ellis G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
[29] Yan D, Wang H, Fu Q L, et al. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2015, 65: 290-301.
[30] 周炼,周红兵,李茉,等. 扬子克拉通古大陆边缘Mo同位素特征及对有机埋藏量的指示意义[J]. 地球科学:中国地质大学学报,2007,32(6):759-766.

Zhou Lian, Zhou Hongbing, Li Mo, et al. Molybdenum isotope signatures from Yangtze Craton continental margin and its indication to organic burial rate[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(6): 759-766.
[31] Zhou L, Algeo T J, Shen J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234.
[32] Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3631-3642.
[33] Zhao J H, Jin Z J, Jin Z K, et al. Applying sedimentary geochemi-cal proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China[J]. International Journal of Coal Geology, 2016, 163: 52-71.
[34] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum–uranium covariation:Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58.
[35] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[36] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemi- stry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
[37] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[38] Sensarma S, Rajamani V, Tripathi J K. Petrography and geochemical characteristics of the sediments of the small River Hemavati, southern India: Implications for provenance and weathering processes[J]. Sedimentary Geology, 2008, 205(3/4): 111-125.
[39] Zhang Y N, Wang Z W, Yang X, et al. Petrological and Ni-Mo isotopic evidence for the genesis of the Ni- and Mo-sulfide extremely enriched early Cambrian black shale from southwest China[J]. Chemical Geology, 2022, 598: 120812.
[40] 陈旭,樊隽轩,王文卉,等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学:地球科学,2017,47(6):720-732.

Chen Xu, Fan Junxuan, Wang Wenhui, et al. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, central China[J]. Science China: Earth Sciences, 2017, 47(6): 720-732.
[41] 陈旭,戎嘉余,樊隽轩,等. 奥陶—志留系界线地层生物带的全球对比[J]. 古生物学报,2000,39(1):100-114.

Chen Xu, Rong Jiayu, Fan Junxuan, et al. A global correlation of biozones across the Ordovician-Silurian boundary[J]. Acta Palaeontologica Sinica, 2000, 39(1): 100-114.
[42] Liang X, Shan C, Wang W X, et al. Exploration and development in the Zhaotong national shale gas demonstration area: Progress and prospects[J]. Natural Gas Industry B, 2023, 10(1): 44-61.