[1] 王飞,王珊珊,王新,等. 杭州湾悬浮泥沙遥感反演与变化动力分析[J]. 华中师范大学学报(自然科学版),2014,48(1):112-116,135.

Wang Fei, Wang Shanshan, Wang Xin, et al. Remote sensing retrieval and dynamic driving force analysis of suspended sediment in Hangzhou Bay[J]. Journal of Huazhong Normal University (Natural Sciences), 2014, 48(1): 112-116, 135.
[2] Li P, Li G X, Qiao L L, et al. Modeling the tidal dynamic changes induced by the bridge in Jiaozhou Bay, Qingdao, China[J]. Continental Shelf Research, 2014, 84: 43-53.
[3] Unger J, Hager W H. Down-flow and horseshoe vortex characte-ristics of sediment embedded bridge piers[J]. Experiments in Fluids, 2007, 42(1): 1-19.
[4] 庞启秀,庄小将,黄哲浩,等. 跨海大桥桥墩对周围海区水动力环境影响数值模拟[J]. 水道港口,2008,29(1):16-20.

Pang Qixiu, Zhuang Xiaojiang, Huang Zhehao, et al. Study on numerical simulation of hydrodynamic conditions influenced by pier in sea[J]. Journal of Waterway and Harbor, 2008, 29(1): 16-20.
[5] Zhao K, Qiao L L, Shi J H, et al. Evolution of sedimentary dynamic environment in the western Jiaozhou Bay, Qingdao, China in the last 30 years[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 244-253.
[6] Cai L N, Tang D L, Li C Y. An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data[J]. Advances in Space Research, 2015, 56(2): 293-303.
[7] 刘大召,李卓,陈仔豪,等. 基于高分1号遥感数据港珠澳大桥对珠江口海域悬浮泥沙分布的影响[J]. 广东海洋大学学报,2020,40(6):89-95.

Liu Dazhao, Li Zhuo, Chen Zihao, et al. Influence of Hong Kong-Zhuhai-Macao Bridge on the distribution of suspended sediment in the Pearl River Estuary[J]. Journal of Guangdong Ocean University, 2020, 40(6): 89-95.
[8] 程乾,刘波,李婷,等. 基于高分1号杭州湾河口悬浮泥沙浓度遥感反演模型构建及应用[J]. 海洋环境科学,2015,34(4):558-563,577.

Cheng Qian, Liu Bo, Li Ting, et al. Research on remote sensing retrieval of suspended sediment concentration in Hangzhou Bay by GF-1 satellite[J]. Marine Environmental Science, 2015, 34(4): 558-563, 577.
[9] 刘波,程乾,曾焕建,等. 基于GOCI数据的杭州湾跨海大桥两侧水域悬浮泥沙浓度空间分异规律研究[J]. 杭州师范大学学报(自然科学版),2016,15(1):102-107.

Liu Bo, Cheng Qian, Zeng Huanjian, et al. On the suspended sediment concentration distribution and diversity of the waters on both sides of Hangzhou Bay sea-crossing bridge based on GOCI data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2016, 15(1): 102-107.
[10] Guo J, Ma C L, Ai B, et al. Assessing the effects of the Hong Kong-Zhuhai-Macau Bridge on the total suspended solids in the pearl river estuary based on Landsat time series[J]. Journal of Geophysical Research: Oceans, 2020, 125(8): e2020JC016202.
[11] 陈吉余,陈沈良,丁平兴,等. 长江口南汇咀近岸水域泥沙输移途径[J]. 长江流域资源与环境,2001,10(2):166-172.

Chen Jiyu, Chen Shenliang, Ding Pingxing, et al. Sediment transport along the Nanhui submerged spit of the Yangtze Estuary[J]. Resources and Environment in the Yangtze Basin, 2001, 10(2): 166-172.
[12] 江彬彬,张霄宇,杜泳,等. 基于GOCI的近岸高浓度悬浮泥沙遥感反演:以杭州湾及邻近海域为例[J]. 浙江大学学报(理学版),2015,42(2):220-227.

Jiang Binbin, Zhang Xiaoyu, Du Yong, et al. Retrieving high concentration of suspended sediments based on GOCI: An example from coastal water around Hangzhou Bay, China[J]. Journal of Zhejiang University (Science Edition), 2015, 42(2): 220-227.
[13] 刘猛,沈芳,葛建忠,等. 静止轨道卫星观测杭州湾悬浮泥沙浓度的动态变化及动力分析[J]. 泥沙研究,2013(1):7-13.

Liu Meng, Shen Fang, Ge Jianzhong, et al. Diurnal variation of suspended sediment concentration in Hangzhou Bay from geostationary satellite observation and its hydrodynamic analysis[J]. Journal of Sediment Research, 2013(1): 7-13.
[14] 叶涛焱. 杭州湾多时空尺度悬沙动力变化特征及与潮滩变化的互馈机理[D]. 杭州:浙江大学,2019.

Ye Taoyan. The multi-scale variations of suspended sediment dynamics in Hangzhou Bay and its interaction with tidal flat variations[D]. Hangzhou: Zhejiang University, 2019.
[15] 孙志国. 芦洋跨海大桥建设对潮流影响的数模研究[D]. 大连:大连理工大学,2003.

Sun Zhiguo. Numerical modeling study of the impact of the construction of the Luyang cross-sea bridge on tidal current[D]. Dalian: Dalian University of Technology, 2003.
[16] 刘玮祎. 东海大桥沿线及邻近海域海床冲淤分析[D]. 上海:华东师范大学,2007.

Liu Weiyi. Analysis of accretion and erosion of the Donghai Bridge and its adjacent sea bed[D]. Shanghai: East China Normal University, 2007.
[17] Qiao S N, Pan D L, He X Q, et al. Numerical study of the influence of Donghai Bridge on sediment transport in the mouth of Hangzhou Bay[J]. Procedia Environmental Sciences, 2011, 10: 408-413.
[18] 陈沈良,谷国传. 杭州湾口悬沙浓度变化与模拟[J]. 泥沙研究,2000(5):45-50.

Chen Shenliang, Gu Guochuan. Modeling suspended sediment concentrations in the mouth of Hangzhou Bay[J]. Journal of Sediment Research, 2000(5): 45-50.
[19] 黄融. 跨海大桥设计与施工:东海大桥[M]. 北京:人民交通出版社,2009:1-1324.

Huang Rong. Cross-sea bridge design and construction: Donghai Bridge[M]. Beijing: China Communications Press, 2009: 1-1324.
[20] 董永发. 杭州湾底质的粒度特征和泥沙来源[J]. 上海地质,1991(3):44-51.

Dong Yongfa. Grain size features of bed material and sedimentary source in the Hangzhou Bay[J]. Shanghai Geology, 1991(3): 44-51.
[21] Choi J K, Park Y J, Ahn J H, et al. GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C090004.
[22] 杨雪飞. 基于GOCI和数值模拟的东海近岸悬浮泥沙浓度逐时变化研究[D]. 上海:中国科学院研究生院(上海技术物理研究所),2016.

Yang Xuefei. Diurnal variation of suspended sediment concentration coupled GOCI and numerical simulation in coastal waters of the East China Sea[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics of the Chinese Academy of Sciences), 2016.
[23] Ryu J H, Han H J, Cho S, et al. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)[J]. Ocean Science Journal, 2012, 47(3): 223-233.
[24] He X Q, Bai Y, Pan D L, et al. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 2013, 133: 225-239.
[25] Meng Q H, Mao Z H, Huang H Q, et al. Inversion of suspended sediment concentration at the Hangzhou Bay based on the high-resolution satellite HJ-1A/B imagery[C]//Proceedings of SPIE 8869, remote sensing and modeling of ecosystems for sustainability X. San Diego: SPIE, 2013: 88690W.
[26] Xie D F, Pan C H, Wu X G, et al. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 2999-3020.
[27] 杨宪平. 长江口及邻近海域表层悬浮泥沙与漫衰减系数的遥感估算[D]. 上海:华东师范大学,2016.

Yang Xianping. Evaluation of suspended sendiment concentration and diffuse attenuation coefficient by in situ and satellite remote sensing methods in Yangtze River Estuary and adjacent coastal area[D]. Shanghai: East China Normal University, 2016.
[28] Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectors"[J]. Sedimentary Geology, 1992, 81(1/2): 47-60.
[29] 高抒. 沉积物粒径趋势分析:原理与应用条件[J]. 沉积学报,2009,27(5):826-836.

Gao Shu. Grain size trend analysis: Principle and applicability[J]. Acta Sedimentologica Sinica, 2009, 27(5): 826-836.
[30] 郝连成,远继东,郑立龙,等. 湛江湾海域表层沉积物粒度特征及沉积环境[J]. 海洋地质前沿,2022,38(8):1-10.

Hao Liancheng, Yuan Jidong, Zheng Lilong, et al. Grain-size characteristics of surface sediment and sedimentary environment in Zhanjiang Bay[J]. Marine Geology Frontiers, 2022, 38(8): 1-10.
[31] 时翠,甘华阳,夏真,等. 珠江口内伶仃洋表层沉积物粒度特征及其运移趋势[J]. 海洋地质与第四纪地质,2015,35(1):13-20.

Shi Cui, Gan Huayang, Xia Zhen, et al. Characteristics and transport trend of surface sediments in inner Lingdingyang firth of the Pearl River Estuary[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 13-20.
[32] 程鹏,高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼,2000,31(6):604-615.

Cheng Peng, Gao Shu. Net sediment transport patterns over the northwestern Yellow Sea, based upon grain size trend analysis[J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 604-615.
[33] Li L, Xu J Y, Ren Y H, et al. Effects of wave-current interactions on sediment dynamics in Hangzhou Bay during typhoon Mitag[J]. Frontiers in Earth Science, 2022, 10: 931472.
[34] 刘光生. 杭州湾水沙运动特性分析[J]. 浙江水利科技,2013,41(2):56-60.

Liu Guangsheng. Study of hydrodynamic and sediment transport in Hangzhou Bay [J]. Zhejiang Hydrotechnics, 2013, 41(2): 56-60.
[35] 陈沈良. 杭州湾口南汇咀近岸水域水沙特征与通量[J]. 海洋科学,2004,28(3):18-22.

Chen Shenliang. Hydrological and sediment features and fluxes in Nanhui nearshore waters, Hangzhou Bay[J]. Marine Sciences, 2004, 28(3): 18-22.
[36] 罗向欣,杨世伦,张文祥,等. 近期长江口—杭州湾邻近海域沉积物粒径的时空变化及其影响因素[J]. 沉积学报,2012,30(1):137-147.

Luo Xiangxin, Yang Shilun, Zhang Wenxiang, et al. Recent spatial pattern and temporal variation in sediment grain size in the inshore area adjacent to the Yangtze Estuary and Hangzhou Bay[J]. Acta Sedimentologica Sinica, 2012, 30(1): 137-147.
[37] 陈沈良,严肃庄,李玉中. 长江口及其邻近海域表层沉积物分布特征[J]. 长江流域资源与环境,2009,18(2):152-156.

Chen Shenliang, Yan Suzhuang, Li Yuzhong. Characteristics of surface sediment distribution in the Yangtze Estuary and its adjacent waters[J]. Resources and Environment in the Yangtze Basin, 2009, 18(2): 152-156.
[38] 唐士芳,李蓓. 桩群阻力影响下的潮流数值模拟研究[J]. 中国港湾建设,2001(5):25-29.

Tang Shifang, Li Bei. Study on numerical simulation of tidal flow influenced by pile group resistance[J]. China Harbour Engineering, 2001(5): 25-29.
[39] 陈雅望,盛辉,许庆华,等. 近40年来长江口沉积物粒度变化及其对底床冲淤的响应[J]. 水利水运工程学报,2021(5):8-18.

Chen Yawang, Sheng Hui, Xu Qinghua, et al. Analysis of sediment grain size change and its response to erosion and deposition pattern within the Yangtze River Estuary for the past 40 years[J]. Hydro-Science and Engineering, 2021(5): 8-18.