[1] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84: 1185-1199.
[2] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[3] Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744.
[4] Schieber J. Reverse engineering mother nature-Shale sedimentology from an experimental perspective[J]. Sedimentary Geology, 2011, 238(1/2): 1-22.
[5] Stow D A V, Bowen A J. Origin of lamination in deep sea, fine-grained sediments[J]. Nature, 1978, 274(27): 324-328.
[6] Emeis K C, Weissert H. Tethyan-Mediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels[J]. Sedimentology, 2009, 56(1): 247-266.
[7] 陈尚斌,朱炎铭,王红岩,等. 中国页岩气研究现状与发展趋势[J]. 石油学报,2010,31(4):689-694.

Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Research status and trends of shale gas in China[J]. Acta Petrolei Sinica, 2010, 31(4): 689-694.
[8] 刘树根,马文辛,Luba J,等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报,2011,27(8):2239-2252.

Liu Shugen, Ma Wenxin, Luba J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252.
[9] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[10] Schieber J. SEM observations on ion-milled samples of Devonian black shales from Indiana and New York: The petrographic context of multiple pore types[M]//Camp W K, Diaz E, Wawak B. Electron microscopy of shale hydrocarbon reservoirs. Tulsa: AAPG, 2013: 153-171.
[11] Schieber J. Mud re-distribution in epicontinental basins-Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.
[12] Macquaker J H S, Bohacs K M. On the accumulation of mud[J]. Science, 2007, 318(5857): 1734-1735.
[13] 冯增昭. 沉积岩石学[M]. 2版. 北京:石油工业出版社,1994:70.

Feng Zengzhao. Sedimentary petrology[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 70.
[14] Schieber J. Possible indicators of microbial mat deposits in shales and sandstones: Examples from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A.[J]. Sedimentary Geology, 1998, 120(1/2/3/4): 105-124.
[15] Schieber J. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York[J]. Journal of Sedimentary Research, 1999, 69(4): 909-925.
[16] Schieber J. Microbial mats in terrigenous clastics: The challenge of identification in the rock record[J]. PALAIOS, 1999, 14(1): 3-12.
[17] 刘强,游海涛,刘嘉麒. 湖泊沉积物年纹层的研究方法及其意义[J]. 第四纪研究,2004,24(6):683-694.

Liu Qiang, You Haitao, Liu Jiaqi. Methodology of studying on varved lake sediments and its significance[J]. Quaternary Sciences, 2004, 24(6): 683-694.
[18] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
[19] Stow D A V, Huc A Y, Bertrand P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498.
[20] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[21] Macquaker J H S, Bentley S J, Bohacs K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
[22] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
[23] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187.

Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
[24] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[25] Macquaker J H S, Keller M A, Davies S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942.
[26] 刘东生,刘嘉麒,吕厚远. 玛珥湖高分辨率古环境研究的新进展[J]. 第四纪研究,1998,18(4):289-296.

Liu Tungsheng, Liu Jiaqi, Houyuan Lü. Progress in high-resolution paleoenvironment research from maar lake[J]. Quaternary Sciences, 1998, 18(4): 289-296.
[27] 胡斌,王冠忠,齐永安. 痕迹学理论与应用[M]. 徐州:中国矿业大学出版社,1997:1-209.

Hu Bin, Wang Guanzhong, Qi Yong’an. Theory of ichnoloy and its application[M]. Xuzhou: China University of Mining and Technology Press, 1997: 1-209.
[28] 杨孝群,李忠. 微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J]. 沉积学报,2018,36(4):639-650.

Yang Xiaoqun, Li Zhong. Research progress in sedimentology of microbial carbonate rocks: A review based on the 33rd international sedimentological congress[J]. Acta Sedimentologica Sinica, 2018, 36(4): 639-650.
[29] 韩作振,陈吉涛,迟乃杰,等. 微生物碳酸盐岩研究:回顾与展望[J]. 海洋地质与第四纪地质,2009,29(4):29-38.

Han Zuozhen, Chen Jitao, Chi Naijie, et al. Microbial carbonates: A review and perspectives[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38.
[30] Perri E, Tucker M E, Słowakiewicz M, et al. Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses[J]. Sedimentology, 2018, 65(4): 1213-1245.
[31] Tyson R V. Sedimentary organic matter: Organic facies and palynofacies[M]. London: Chapman and Hall, 1995: 615.
[32] Winterwerp J C. On the flocculation and settling velocity of estuarine mud[J]. Continental Shelf Research, 2002, 22(9): 1339-1360.
[33] Abouelresh M O. Multiscale erosion surfaces of the organic-rich Barnett Shale, Fort Worth Basin, USA[J]. Journal of Geological Research, 2013, ID 759395.
[34] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822.
[35] Rust B R, Nanson G C. Bedload transport of mud as pedogenic aggregates in modern and ancient rivers[J]. Sedimentology, 1989, 36(2): 291-306.
[36] Müller R, Nystuen J P, Wright V P. Pedogenic mud aggregates and paleosol development in ancient dryland river systems: Criteria for interpreting alluvial mudrock origin and floodplain dynamics[J]. Journal of Sedimentary Research, 2004, 74(4): 537-551.
[37] Silver M W, Shanks A L, Trent J D. Marine snow: Microplankton habitat and source of small-scale patchiness in pelagic populations[J]. Science, 1978, 201(4353): 371-373.
[38] Alldredge A L, Gotschalk C C. The relative contribution of marine snow of different origins to biological processes in coastal waters[J]. Continental Shelf Research, 1990, 10(1): 41-58.
[39] Turner J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms[J]. Aquatic Microbial Ecology, 2002, 27(1): 57-102.
[40] Middleton N J, Goudie A S. Saharan dust: Sources and trajectories[J]. Transactions of the Institute of British Geographers, 2001, 26(2): 165-181.
[41] Werne J P, Sageman B B, Lyons T W, et al. An integrated assessment of a “type euxinic” deposit: Evidence for multiple controls on black shale deposition in the middle Devonian Oatka Creek Formation[J]. American Journal of Science, 2002, 302(2): 110-143.
[42] Sageman B B, Murphy A E, Werne J P, et al. The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
[43] 苏文博,李志明,史晓颖,等. 华南五峰组一龙马溪组与华北下马岭组的钾质斑脱岩及黑色岩系:两个地史转折期板块构造运动的沉积响应[J]. 地学前缘,2006,13(6):82-95.

Su Wenbo, Li Zhiming, Shi Xiaoying, et al. K-bentonites and black shales from the Wufeng-Longmaxi formations (Early Paleozoic, South China) and Xiamaling formation (Early Neoproterozoic, North China) -implications for tectonic processes during two important transitions[J]. Earth Science Frontiers, 2006, 13(6): 82-95.
[44] Wright V P, Marriott S B. The dangers of taking mud for granted: Lessons from Lower Old Red Sandstone dryland river systems of South Wales[J]. Sedimentary Geology, 2007, 195(1/2): 91-100.
[45] Falcieri F M, Benetazzo A, Sclavo M, et al. Po River plume pattern variability investigated from model data[J]. Continental Shelf Research, 2014, 87: 84-95.
[46] Weight R W R, Anderson J B, Fernandez R. Rapid mud accumulation on the central Texas shelf linked to climate change and sea-level rise[J]. Journal of Sedimentary Research, 2011, 81(10): 743-764.
[47] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
[48] Pattison S A J. Storm-influenced prodelta turbidite complex in the Lower Kenilworth member at Hatch Mesa, Book Cliffs, Utah, U.S.A.: Implications for shallow marine facies models[J]. Journal of Sedimentary Research, 2005, 75(3): 420-439.
[49] Kineke G C, Woolfe K J, Kuehl S A, et al. Sediment export from the Sepik River, Papua New Guinea: Evidence for a divergent sediment plume[J]. Continental Shelf Research, 2000, 20(16): 2239-2266.
[50] Ogston A S, Sternberg R W, Nittrouer C A, et al. Sediment delivery from the Fly River tidally dominated delta to the nearshore marine environment and the impact of El Nino[J]. Journal of Geophysical Research, 2008, 113(F1): F01S11.
[51] Martin D P, Nittrouer C A, Ogston A S, et al. Tidal and seasonal dynamics of a muddy inner shelf environment, Gulf of Papua[J]. Journal of Geophysical Research, 2008, 113(F1): F01S07.
[52] Plint A G. Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647.
[53] Southard J B, Young R A, Hollister C D. Experimental erosion of calcareous ooze[J]. Journal of Geophysical Research, 1971, 76(24): 5903-5909.
[54] Lonsdale P, Southard J B. Experimental erosion of North Pacific red clay[J]. Marine Geology, 1974, 17(1): M51-M60.
[55] Kämpf J, Myrow P. High-density mud suspensions and cross-shelf transport: On the mechanism of gelling ignition[J]. Journal of Sedimentary Research, 2014, 84(3): 215-223.
[56] Einsele G, Overbeck R, Schwarz H U, et al. Mass physical properties, sliding and erodibility of experimentally deposited and differently consolidated clayey muds (Approach, equipment, and first results)[J]. Sedimentology, 1974, 21(3): 339-372.
[57] Young R N, Southard J B. Erosion of fine-grained marine sediments: Sea-floor and laboratory experiments[J]. GSA Bulletin, 1978, 89(5): 663-672.
[58] Schünemann M, Kühl H. Experimental investigations of the erosional behavior of naturally formed mud from the Elbe estuary and adjacent Wadden Sea, Germany[M]//Mehta A J. Nearshore and estuarine cohesive sediment transport, volume42. Washington: American Geophysical Union, 1993: 314-330.
[59] Rine J M, Ginsburg R N. Depositional facies of a mud shoreface in Suriname, South America: A mud analogue to sandy, shallow-marine deposits[J]. Journal of Sedimentary Research, 1985, 55(5): 633-652.
[60] Warrick J A, DiGiacomo P M, Weisberg S B, et al. River plume patterns and dynamics within the southern California Bight[J]. Continental Shelf Research, 2007, 27(19): 2427-2448.
[61] Campbell C V. Lamina, Laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
[62] Bates R L, Jackson J A. Glossary of geology[M]. Falls Church, VI: American Geological Institute, 1987.
[63] 施振生,邱振,董大忠,等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发,2018,45(2):339-348.

Shi Zhensheng, Qiu Zhen, Dong Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348.
[64] 施振生,董大忠,王红岩,等. 含气页岩不同纹层及组合储集层特征差异性及其成因:以四川盆地下志留统龙马溪组一段典型井为例[J]. 石油勘探与开发,2020,47(4):829-840.

Shi Zhensheng, Dong Dazhong, Wang Hongyan, et al. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(4): 829-840.
[65] Lobza V, Schieber J. Biogenic sedimentary structures produced by worms in soupy, soft muds: Observations from the Chattanooga shale (Upper Devonian) and experiments[J]. Journal of Sedimentary Research, 1999, 69(5): 1041-1049.
[66] Zou C N, Poulton S W, Dong D Z, et al. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J]. Geology, 2018, 46(6): 535-538.
[67] 戎嘉余,黄冰. 华南奥陶纪末生物大灭绝的肇端标志:腕足动物稀少贝组合(Manosia Assemblage)及其穿时分布[J]. 地质学报,2019,93(3):509-527.

Rong Jiayu, Huang Bing. An indicator of the onset of the end Ordovician mass extinction in South China: The Manosia brachiopod assemblage and its diachronous distribution[J]. Acta Geologica Sinica, 2019, 93(3): 509-527.
[68] Schieber J. The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins[J]. Sedimentology, 1986, 33(4): 521-536.
[69] Morris K A. Comparison of major sequences of organic-rich mud deposition in the British Jurassic[J]. Journal of the Geological Society, 1980, 137(2): 157-170.
[70] O’Brien N R. Significance of lamination in Toarcian (Lower Jurassic) shales from Yorkshire, Great Britain[J]. Sedimentary Geology, 1990, 67(1/2): 25-34.
[71] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:92.

Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 92.
[72] Schimmelmann A, Lange C B, Schieber J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246.
[73] Zolitschka B, Francus P, Ojala A E K, et al. Varves in lake sediments-a review[J]. Quaternary Science Reviews, 2015, 117: 1-41.
[74] 王超,张柏桥,舒志国,等. 焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义[J]. 地球科学,2019,44(3):972-982.

Wang Chao, Zhang Boqiao, Shu Zhiguo, et al. Shale lamination and its influence on shale reservoir quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J]. Earth Science, 2019, 44(3): 972-982.
[75] Vernik L. Microcrack-induced versus intrinsic elastic anisotropy in mature HC-source shales[J]. Geophysics, 1993, 58(11): 1703-1706.
[76] Vernik L. Hydrocarbon-generation-induced microcracking of source rocks[J]. Geophysics, 1994, 59(4): 555-563.
[77] 张士万,孟志勇,郭战峰,等. 涪陵地区龙马溪组页岩储层特征及其发育主控因素[J]. 天然气工业,2014,34(12):16-24.

Zhang Shiwan, Meng Zhiyong, Guo Zhanfeng, et al. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Fm, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 16-24.
[78] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796.

Zou Caineng, Zhao Qun, Dong Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.
[79] 熊周海,操应长,王冠民,等. 湖相细粒沉积岩纹层结构差异对可压裂性的影响[J]. 石油学报,2019,40(1):74-85.

Xiong Zhouhai, Cao Yingchang, Wang Guanmin, et al. Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2019, 40(1): 74-85.
[80] 许丹,胡瑞林,高玮,等. 页岩纹层结构对水力裂缝扩展规律的影响[J]. 石油勘探与开发,2015,42(4):523-528.

Xu Dan, Hu Ruilin, Gao Wei, et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015, 42(4): 523-528.
[81] 王永辉,刘玉章,丁云宏,等. 页岩层理对压裂裂缝垂向扩展机制研究[J]. 钻采工艺,2017,40(5):39-42.

Wang Yonghui, Liu Yuzhang, Ding Yunhong, et al. Research on influence of shale bedding to vertical extension mechanism of hydraulic fracture[J]. Drilling & Production Technology, 2017, 40(5): 39-42.
[82] 衡帅,杨春和,郭印同,等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报,2015,34(2):228-237.

Heng Shuai, Yang Chunhe, Guo Yintong, et al. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228-237.
[83] 孙可明,冀洪杰,张树翠. 页岩层理方位及强度对水力压裂的影响[J]. 实验力学,2020,35(2):343-348.

Sun Keming, Ji Hongjie, Zhang Shucui. Influence of bedding azimuth and strength on hydraulic fracturing in shale[J]. Journal of Experimental Mechanics, 2020, 35(2): 343-348.