[1] Pettijohn F J. Sedimentary rocks[M]. 3rd ed. New York: Harper & Row, 1975.
[2] Haughton P D W, Todd S P, Morton A C. Sedimentary provenance studies[J]. Geological Society, London, Special Publications, 1991, 57( 1): 1- 11.
[3] Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171( 1/2/3/4): 1- 11.
[4] Bracciali L, Marroni M, Luca P, et al. Geochemistry and petrography of western Tethys Cretaceous sedimentary covers (Corsica and northern Apennines): From source areas to configuration of margins[M]//Arribas J, Johnsson M J, Critelli S. Sedimentary provenance and petrogenesis: Perspectives from petrography and geochemistry. Boulder: Geological Society of America, 2007: 73.
[5] Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Busby C, Azor A. Tectonics of sedimentary basins: Recent advances. Hoboken: Blackwell Publishing Ltd., 2011: 45- 62.
[6] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40( 10): 875- 878.
[7] Gehrels G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 127- 149.
[8] Garzanti E. From static to dynamic provenance analysis—Sedimentary petrology upgraded[J]. Sedimentary Geology, 2016, 336: 3- 13.
[9] 胡修棉. 物源分析的一个误区:砂粒在河流搬运过程中的变化[J]. 古地理学报, 2017, 19( 1): 175- 184.

Hu Xiumian. A misunderstanding in provenance analysis: Sand changes of mineral, roundness, and size in flowing-water transportation[J]. Journal of Palaeogeography, 2017, 19( 1): 175- 184.
[10] 赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21( 3): 409- 415.

Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21( 3): 409- 415.
[11] 徐亚军, 杜远生, 杨江海. 沉积物物源分析研究进展[J]. 地质科技情报, 2007, 26( 3): 26- 32.

Xu Yajun, Du Yuansheng, Yang Jianghai. Prospects of sediment provenance analysis[J]. Geological Science and Technology Information, 2007, 26( 3): 26- 32.
[12] 陈文, 万渝生, 李华芹, 等. 同位素地质年龄测定技术及应用[J]. 地质学报, 2011, 85( 11): 1917- 1947.

Chen Wen, Wan Yusheng, Li Huaqin, et al. Isotope geochronology: Technique and application[J]. Acta Geologica Sinica, 2011, 85( 11): 1917- 1947.
[13] 杨仁超, 李进步, 樊爱萍, 等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 2013, 31( 1): 99- 107.

Yang Renchao, Li Jinbu, Fan Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31( 1): 99- 107.
[14] 马收先, 孟庆任, 曲永强. 轻矿物物源分析研究进展[J]. 岩石学报, 2014, 30( 2): 597- 608.

Ma Shouxian, Meng Qingren, Qu Yongqiang. Development on provenance analysis of light minerals[J]. Acta Petrologica Sinica, 2014, 30( 2): 597- 608.
[15] Ireland T R, Williams I S. Considerations in zircon geochronology by SIMS[J]. Reviews in Mineralogy and Geochemistry, 2003, 53( 1): 215- 241.
[16] Barham M, Kirkland C L, Hovikoski J, et al. Reduce or recycle? Revealing source to sink links through integrated zircon-feldspar provenance fingerprinting[J]. Sedimentology, 2021, 68( 2): 531- 556.
[17] Pearson D G, Woodhead J, Janney P E. Kimberlites as geochemical probes of Earth’s mantle[J]. Elements, 2019, 15( 6): 387- 392.
[18] von Eynatten H, Dunkl I. Assessing the sediment factory: The role of single grain analysis[J]. Earth-Science Reviews, 2012, 115( 1/2): 97- 120.
[19] Guo R H, Hu X M, Garzanti E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082.
[20] Caracciolo L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development[J]. Earth-Science Reviews, 2020, 209: 103226.
[21] Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247( 3/4): 252- 266.
[22] 郭佩, 刘池洋, 王建强, 等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报, 2017, 35( 1): 46- 56.

Guo Pei, Liu Chiyang, Wang Jianqiang, et al. Considerations on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentologica Sinica, 2017, 35( 1): 46- 56.
[23] Le Pera E, Arribas J, Critelli S, et al. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): Implications for provenance studies[J]. Sedimentology, 2001, 48( 2): 357- 378.
[24] Morton A C, Whitham A G, Fanning C M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data[J]. Sedimentary Geology, 2005, 182( 1/2/3/4): 3- 28.
[25] Frihy O E. The Nile delta: Processes of heavy mineral sorting and depositional patterns[J]. Developments in Sedimentology, 2007, 58: 49- 74.
[26] Garzanti E, Andò S. Heavy mineral concentration in modern sands: Implications for provenance interpretation[J]. Developments in Sedimentology, 2007, 58: 517- 545.
[27] Lang K A, Huntington K W, Montgomery D R. Erosion of the Tsangpo gorge by Megafloods, eastern Himalaya[J]. Geology, 2013, 41( 9): 1003- 1006.
[28] He M Y, Zheng H B, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River Basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121- 140.
[29] Malusà M G, Resentini A, Garzanti E. Hydraulic sorting and mineral fertility bias in detrital geochronology[J]. Gondwana Research, 2016, 31: 1- 19.
[30] Jonell T N, Carter A, Böning P, et al. Climatic and glacial impact on erosion patterns and sediment provenance in the Himalayan rain shadow, Zanskar River, NW India[J]. GSA Bulletin, 2017, 129( 7/8): 820- 836.
[31] Yang J S, Xu Z Q, Dobrzhinetskaya L F, et al. Discovery of metamorphic diamonds in central China: An indication of a > 4000-km-long zone of deep subduction resulting from multiple continental collisions[J]. Terra Nova, 2003, 15( 6): 370- 379.
[32] Yin A, Manning C E, Lovera O, et al. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China[J]. International Geology Review, 2007, 49( 8): 681- 716.
[33] 李兆, 陈岳龙, 刘长征, 等. 北祁连的形成与演化历史:来自河流沉积物地球化学及其碎屑锆石U-Pb年龄、Hf同位素组成的证据[J]. 地质学报, 2016, 90( 2): 267- 283.

Li Zhao, Chen Yuelong, Liu Changzheng, et al. Formation and evolution history on the northern Qilian Orogen: The evidences from compositions of rivers' sediments and their zircon U-Pb ages, Hf isotopic compositions[J]. Acta Geologica Sinica, 2016, 90( 2): 267- 283.
[34] 吴龙, 柳长峰, 刘文灿, 等. 青藏高原东北缘祁连山三叠系砂岩碎屑锆石U-Pb定年及其物源分析[J]. 现代地质, 2021, 35( 5): 1178- 1193.

Wu Long, Liu Changfeng, Liu Wencan, et al. Detrital zircon U-Pb dating and provenance analysis for the Triassic sandstone in Qilianshan Orogen, NE margin of Tibetan Plateau[J]. Geoscience, 2021, 35( 5): 1178- 1193.
[35] 彭楠, 柳永清, 旷红伟, 等. 北祁连—北山地区早白垩世盆地物源分析:来自古水流、砾石组分、砂岩组分和碎屑锆石年龄的证据[J]. 地质通报, 2013, 32( 2): 456- 475.

Peng Nan, Liu Yongqing, Kuang Hongwei, et al. The provenance of Lower Cretaceous basin in the Qilian Mountain-Beishan area: Evidence from paleocurrents, gravels, sandstone compositions and detrital zircon geochronology[J]. Geological Bulletin of China, 2013, 32( 2): 456- 475.
[36] Wang W T, Zhang P Z, Yu J X, et al. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin[J]. Scientific Reports, 2016, 6: 27604.
[37] Cheng F, Garzione C, Jolivet M, et al. Provenance analysis of the Yumen Basin and northern Qilian Shan: Implications for the pre-collisional paleogeography in the NE Tibetan Plateau and eastern termination of Altyn Tagh fault[J]. Gondwana Research, 2019, 65: 156- 171.
[38] Gong H J, Zhao H, Xie W B, et al. Tectono-thermal events of the North Qilian Orogenic Belt, NW China: Constraints from detrital zircon U-Pb ages of Heihe River sediments[J]. Journal of Asian Earth Sciences, 2017, 138: 647- 656.
[39] 田晴映, 郑文俊, 张冬丽, 等. 构造活动和气候变化对河流阶地发育的影响:以祁连山北缘洪水坝河和马营河为例[J]. 地震地质, 2017, 39( 6): 1283- 1296.

Tian Qingying, Zheng Wenjun, Zhang Dongli, et al. Influence of tectonics and climate on the evolution of fluvial terraces: A case study of the Hongshuiba and Maying Rivers in the northern margin of the Qilian Mountains[J]. Seismology and Geology, 2017, 39( 6): 1283- 1296.
[40] 佟再三. 北祁连东段石炭纪古地理与构造关系初探[J]. 甘肃地质学报, 1993, 2( 2): 61- 66.

Tong Zaisan. On the relationship between Carboniferous paleogeography and tectonics in the east part of the North Qilian Mountains[J]. Acta Geologica Gansu, 1993, 2( 2): 61- 66.
[41] 徐学义, 何世平, 王洪亮, 等. 早古生代北秦岭—北祁连结合部构造格局的地层及构造岩浆事件约束[J]. 西北地质, 2008, 41( 1): 1- 21.

Xu Xueyi, He Shiping, Wang Hongliang, et al. Tectonic framework of North Qinling Mountain and North Qilian Mountain conjunction area in Early Paleozoic: A study of the evidences from strata and tectonic-magmatic events[J]. Northwestern Geology, 2008, 41( 1): 1- 21.
[42] 徐亚军. 北祁连造山带晚加里东—早海西期造山过程的沉积响应[D]. 武汉: 中国地质大学(武汉), 2010: 1- 150.

Xu Yajun. Sedimentary response to the Late Caledonian-Early Hercynian orogenesis, the North Qilian Orogen[D]. Wuhan: China University of Geosciences (Wuhan), 2010: 1- 150.
[43] Song S G, Niu Y L, Su L, et al. Tectonics of the north Qilian orogen, NW China[J]. Gondwana Research, 2013, 23( 4): 1378- 1401.
[44] 甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989: 1- 320.

Bureau of Geology and Mineral Resources of Gansu Province. Regional geology of Gansu province[M]. Beijing: Geological Publishing House, 1989: 1- 320.
[45] 林晓彤, 李巍然, 时振波. 黄河物源碎屑沉积物的重矿物特征[J]. 海洋地质与第四纪地质, 2003, 23( 3): 17- 21.

Lin Xiaotong, Li Weiran, Shi Zhenbo. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance, China[J]. Marine Geology & Quaternary Geology, 2003, 23( 3): 17- 21.
[46] 王中波, 杨守业, 李萍, 等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报, 2006, 24( 4): 570- 578.

Wang Zhongbo, Yang Shouye, Li Ping, et al. Detrital mineral compositions of the Changjiang River sediments and their tracing implications[J]. Acta Sedimentologica Sinica, 2006, 24( 4): 570- 578.
[47] 张媛媛, 张鹏飞, 聂逢君, 等. 鄂尔多斯盆地北部直罗组砂岩重矿物分布特征及其指示意义[J]. 煤田地质与勘探, 2021, 49( 4): 142- 152.

Zhang Yuanyuan, Zhang Pengfei, Nie Fengjun, et al. Distribution characteristics of heavy minerals in the sandstone of Zhiluo Formation of northern Ordos Basin and its implication[J]. Coal Geology & Exploration, 2021, 49( 4): 142- 152.
[48] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48( 增刊): 26- 30.

Song Biao, Zhang Yuhai, Wan Yusheng, et al. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 2002, 48( Suppl.): 26- 30.
[49] 宋春晖, 孙淑荣, 方小敏, 等. 酒西盆地晚新生代沉积物重矿物分析与高原北部隆升[J]. 沉积学报, 2002, 20( 4): 552- 559.

Song Chunhui, Sun Shurong, Fang Xiaomin, et al. Analysis of tectonic uplift and heavy minerals of sediments on Jiuxi Basin in the northern margin of Tibetan Plateau since the Late Cenozoic[J]. Acta Sedimentologica Sinica, 2002, 20( 4): 552- 559.
[50] 李林林. 盆地沉积物源分析研究进展[J]. 地壳构造与地壳应力文集, 2018, 32( 00): 27- 47.

Li Linlin. The development in sedimentary provenance studies[J]. Bulletin of Crustal Structure and Dynamics, 2018, 32( 00): 27- 47.
[51] 付玲, 关平, 赵为永, 等. 柴达木盆地古近系路乐河组重矿物特征与物源分析[J]. 岩石学报, 2013, 29( 8): 2867- 2875.

Fu Ling, Guan Ping, Zhao Weiyong, et al. Heavy mineral feature and provenance analysis of Paleogene Lulehe Formation in Qaidam Basin[J]. Acta Petrologica Sinica, 2013, 29( 8): 2867- 2875.
[52] 和钟铧, 刘招君, 张峰. 重矿物在盆地分析中的应用研究进展[J]. 地质科技情报, 2001, 20( 4): 29- 32.

He Zhonghua, Liu Zhaojun, Zhang Feng. Latest progress of heavy mineral research in the basin analysis[J]. Geological Science and Technology Information, 2001, 20( 4): 29- 32.
[53] 朱筱敏. 沉积岩石学[M]. 4版. 北京: 石油工业出版社, 2008: 23- 24.

Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 23- 24.
[54] Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the western Alps[M]//Pagel M, Barbin V, Blanc P, et al. Cathodoluminescence in geosciences. Berlin, Heidelberg: Springer, 2000: 373- 400.
[55] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49( 16): 1589- 1604.

Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49( 16): 1589- 1604.
[56] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 32( 3): 161- 174.

Li Changmin. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 2009, 32( 3): 161- 174.
[57] Geisler T, Ulonska M, Schleicher H, et al. Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions[J]. Contributions to Mineralogy and Petrology, 2001, 141( 1): 53- 65.
[58] Morton A C. Heavy minerals in provenance studies[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 249- 277.
[59] 薛春纪, 姬金生, 张连昌, 等. 北祁连镜铁山海底喷流沉积铁铜矿床[J]. 矿床地质, 1997, 16( 1): 21- 30.

Xue Chunji, Ji Jinshen, Zhang Lianchang, et al. The Jingtieshan submarine exhalative-sedimentary Iron-Copper deposit in North Qilian Mountain[J]. Mineral Deposits, 1997, 16( 1): 21- 30.
[60] 毛景文, 张作衡, 简平, 等. 北祁连西段花岗质岩体的锆石U-Pb年龄报道[J]. 地质论评, 2000, 46( 6): 616- 620.

Mao Jingwen, Zhang Zuoheng, Jian Ping, et al. U-Pb zircon dating of the Yeniutan granitic intrusion in the western part of the North Qilian Mountains[J]. Geological Review, 2000, 46( 6): 616- 620.
[61] 汤中立, 白云来. 北祁连造山带两种构造基底岩块及成矿系统[J]. 甘肃地质学报, 2001, 10( 2): 1- 11.

Tang Zhongli, Bai Yunlai. The two types of the tectonic foundation block and its metallogenic systems in the northern Qilianshan Orogenic Belt[J]. Acta Geologica Gansu, 2001, 10( 2): 1- 11.
[62] 彭素霞, 尹传明, 刘建朝, 等. 对北祁连造山带前寒武纪基底物性、火山岩的源区性质及找矿问题的分析和综述[J]. 地质与勘探, 2012, 48( 2): 250- 258.

Peng Suxia, Yin Chuanming, Liu Jianchao, et al. An analytical overview of the Precambrian basement properties, source area characteristics of volcanic rocks and some prospecting problems in the North Qilian Orogenic Belt[J]. Geology and Exploration, 2012, 48( 2): 250- 258.
[63] 张二朋. 西北区区域地层[M]. 武汉: 中国地质大学出版社, 1998: 1- 221.

Zhang Erpeng. Regional stratigraphy in northwest China[M]. Wuhan: China University of Geosciences Press, 1998: 1- 221.
[64] 施振生, 王秀芹, 吴长江. 四川盆地上三叠统须家河组重矿物特征及物源区意义[J]. 天然气地球科学, 2011, 22( 4): 618- 627.

Shi Zhensheng, Wang Xiuqin, Wu Changjiang. The heavy minerals and provenances of the Upper Triassic Xujiahe Formation in Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22( 4): 618- 627.
[65] 何梦颖. 长江河流沉积物矿物学、地球化学和碎屑锆石年代学物源示踪研究[D]. 南京: 南京大学, 2014: 1- 120.

He Mengying. The provenance study on the Yangtze River sediments, based on Mineralogy, Geochemistry and detrital zircon dating[D]. Nanjing: Nanjing University, 2014: 1- 120.
[66] 冯浩轩, 申萍, 李昌昊, 等. 新疆西天山查岗诺尔铁矿床环带石榴子石和绿帘石的发现及意义[J]. 矿床地质, 2020, 39( 5): 805- 824.

Feng Haoxuan, Shen Ping, Li Changhao, et al. Discovery of zoned garnet and epidote in Chagangnuoer iron deposit, western Tianshan Mountains, Xinjiang, and its significance[J]. Mineral Deposits, 2020, 39( 5): 805- 824.
[67] 何杰. 珠江及华南河流现代沉积物特征、风化及物源示踪研究[D]. 武汉: 中国地质大学(武汉), 2021: 1- 182.

He Jie. Sediment charateristics and its weathering and provenance implication of the Pearl River and rivers in South China[D]. Wuhan: China University of Geosciences (Wuhan), 2021: 1- 182.
[68] 朱云海, 陈能松, 王国灿, 等. 东昆中蛇绿岩中单斜辉石、角闪石矿物成分特征及岩石学意义[J]. 地球科学:中国地质大学学报, 1997, 22( 4): 363- 368.

Zhu Yunhai, Chen Nengsong, Wang Guocan, et al. The chemical compositional characteristics and petrological significance of clinopyroxenes and amphiboles in ophiolite in the center of eastern Kunlun Orogenic Belt. Earth Science: Journal of China University of Geosciences, 1997, 22( 4): 363- 368.
[69] 段登飞, 蒋少涌. 鄂东南矿集区鸡冠嘴矽卡岩型金铜矿床含矿岩体中辉石和角闪石成分变化特征及其对岩浆演化和成矿的指示意义[J]. 岩石学报, 2017, 33( 11): 3507- 3517.

Duan Dengfei, Jiang Shaoyong. The composition of pyroxene and amphibole in ore-related pluton in Jiguanzui Au-Cu skarn deposit, Edong region: Implication for the magma evolution and mineralization[J]. Acta Petrologica Sinica, 2017, 33( 11): 3507- 3517.
[70] 张建, 胡小飞, 耿豪鹏, 等. 钻孔及现代河流重矿物特征揭示的更新世以来酒东盆地水系演化历史[J]. 地理科学, 2016, 36( 10): 1595- 1604.

Zhang Jian, Hu Xiaofei, Geng Haopeng, et al. Drainage evolution history in Jiudong Basin since the Pleistocene inferred from heavy mineral characteristics in cores and modern fluvial deposits[J]. Scientia Geographica Sinica, 2016, 36( 10): 1595- 1604.
[71] Gao Y L, Long X P, Luo J, et al. Provenance and Hf isotopic variation of Precambrian detrital zircons from the Qilian Orogenic Belt, NW China: Evidence to the transition from breakup of Columbia to the assembly of Rodinia[J]. Precambrian Research, 2021, 357: 106153.
[72] Xu Y J, Du Y S, Cawood P A, et al. Detrital zircon record of continental collision: Assembly of the Qilian Orogen, China[J]. Sedimentary Geology, 2010, 230( 1/2): 35- 45.
[73] Xu Y J, Du Y S, Cawood P A, et al. Provenance record of a foreland basin: Detrital zircon U-Pb ages from Devonian strata in the North Qilian Orogenic Belt, China[J]. Tectonophysics, 2010, 495( 3/4): 337- 347.
[74] Yang J H, Du Y S, Cawood P A, et al. Silurian collisional suturing onto the southern margin of the North China craton: Detrital zircon geochronology constraints from the Qilian Orogen[J]. Sedimentary Geology, 2009, 220( 1/2): 95- 104.
[75] Li B, Zuza A V, Chen X H, et al. Pre-Cenozoic evolution of the northern Qilian Orogen from zircon geochronology: Framework for early growth of the northern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110091.
[76] Zuza A V, Wu C, Reith R C, et al. Tectonic evolution of the Qilian Shan: An Early Paleozoic orogen reactivated in the Cenozoic[J]. GSA Bulletin, 2018, 130( 5/6): 881- 925.
[77] Wang Y, Chen X H, Zhang Y Y, et al. Superposition of Cretaceous and Cenozoic deformation in northern Tibet: A far-field response to the tectonic evolution of the Tethyan orogenic system[J]. GSA Bulletin, 2022, 134( 1/2): 501- 525.
[78] Saylor J E, Knowles J N, Horton B K, et al. Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands[J]. The Journal of Geology, 2013, 121( 1): 17- 33.
[79] Carrapa B, Faiz bin Hassim M, Kapp P A, et al. Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage[J]. GSA Bulletin, 2017, 129( 5/6): 570- 581.
[80] 权瑞平. 北祁连黑河河流沉积物碎屑锆石U-Pb年代学和Hf同位素研究及其地质意义[D]. 北京: 中国地质大学(北京), 2018: 1- 59.

Quan Ruiping. U-Pb dating and Hf isotopic compositions of detrital zircons in the Heihe Rivers’ sediments from the northern Qilian Orogen and their geological implications[D]. Beijing: China University of Geosciences (Beijing), 2018: 1- 59.
[81] 罗明非, 莫宣学, 喻学惠, 等. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义[J]. 地学前缘, 2015, 22( 5): 182- 195.

Luo Mingfei, Mo Xuanxue, Yu Xuehui, et al. Zircon U-Pb geochronology, petrogenesis and implication of the Later Permian granodiorite from the Wulonggou area in East Kunlun, Qinhai province[J]. Earth Science Frontiers, 2015, 22( 5): 182- 195.
[82] 高永宝, 李侃, 钱兵, 等. 东昆仑卡而却卡铜矿区花岗闪长岩及其暗色微粒包体成因:锆石U-Pb年龄、岩石地球化学及Sr-Nd-Hf同位素证据[J]. 中国地质, 2015, 42( 3): 646- 662.

Gao Yongbao, Li Kan, Qian Bing, et al. The genesis of granodiorites and dark enclaves from the Kaerqueka deposit in East Kunlun belt: Evidence from zircon U-Pb dating, geochemistry and Sr-Nd-Hf isotopic compositions[J]. Geology in China, 2015, 42( 3): 646- 662.
[83] 张炜, 周汉文, 朱云海, 等. 东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据[J]. 地球科学, 2016, 41( 8): 1334- 1348.

Zhang Wei, Zhou Hanwen, Zhu Yunhai, et al. The evolution of Triassic granites associated with mineralization within East Kunlun Orogenic Belt: Evidence from the petrology, geochemistry and zircon U-Pb geochronology of the Mohexiala pluton[J]. Earth Science, 2016, 41( 8): 1334- 1348.
[84] Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24( 5): 523- 545.
[85] Zhang J X, Gong J H, Yu S Y, et al. Neoarchean-Paleoproterozoic multiple tectonothermal events in the western Alxa block, North China Craton and their geological implication: Evidence from zircon U-Pb ages and Hf isotopic composition[J]. Precambrian Research, 2013, 235: 36- 57.
[86] 赵燕, 第五春荣, 敖文昊, 等. 敦煌地块发现~3.06 Ga花岗闪长质片麻岩[J]. 科学通报, 2015, 60( 1): 75- 87.

Zhao Yan, Chunrong Diwu, Ao Wenhao, et al. Ca.3.06 Ga granodioritic gneiss in Dunhuang block[J]. Chinese Science Bulletin, 2015, 60( 1): 75- 87.
[87] Miller J S, Matzel J E P, Miller C F, et al. Zircon growth and recycling during the assembly of large, composite arc plutons[J]. Journal of Volcanology and Geothermal Research, 2007, 167( 1/2/3/4): 282- 299.
[88] McKay M P, Weislogel A L, Fildani A, et al. U-Pb zircon tuff geochronology from the Karoo Basin, South Africa: Implications of zircon recycling on stratigraphic age controls[J]. International Geology Review, 2015, 57( 4): 393- 410.
[89] Quek L X, Lee T Y, Ghani A A, et al. Tracing detrital signature from Indochina in Peninsular Malaysia fluvial sediment: Possible detrital zircon recycling into West Borneo Cenozoic sediments[J]. Journal of Asian Earth Sciences, 2021, 218: 104876.