[1] |
Fisk H N, Kolb C R, McFarlan E, et al. Sedimentary framework of the modern Mississippi delta[J]. Journal of Sedimentary Research, 1954, 24(2): 76-99. |
[2] |
Postma G. An analysis of the variation in delta architecture[J]. Terra Nova, 1990, 2(2): 124-130. |
[3] |
Porębski S J, Steel R J. Deltas and sea-level change[J]. Journal of Sedimentary Research, 2006, 76(3): 390-403. |
[4] |
Edmonds D A, Shaw J B, Mohrig D. Topset-dominated deltas: A new model for river delta stratigraphy[J]. Geology, 2011, 39(12): 1175-1178. |
[5] |
吴胜和,岳大力,冯文杰,等. 碎屑岩沉积构型研究若干进展[J]. 古地理学报,2021,23(2):245-262.
Wu Shenghe, Yue Dali, Feng Wenjie, et al. Research progress of depositional architecture of clastic systems[J]. Journal of Palaeogeography, 2021, 23(2): 245-262. |
[6] |
孙龙德,方朝亮,李峰,等. 油气勘探开发中的沉积学创新与挑战[J]. 石油勘探与开发,2015,42(2):129-136.
Sun Longde, Fang Chaoliang, Li Feng, et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development, 2015, 42(2): 129-136. |
[7] |
朱筱敏,钟大康,袁选俊,等. 中国含油气盆地沉积地质学进展[J]. 石油勘探与开发,2016,43(5):820-829.
Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, et al. Development of sedimentary geology of petroliferous Basins in China[J]. Petroleum Exploration and Development, 2016, 43(5): 820-829. |
[8] |
吴胜和,徐振华,刘钊. 河控浅水三角洲沉积构型[J]. 古地理学报,2019,21(2):202-215.
Wu Shenghe, Xu Zhenhua, Liu Zhao. Depositional architecture of fluvial-dominated shoal water delta[J]. Journal of Palaeogeography, 2019, 21(2): 202-215. |
[9] |
尹太举,李宣玥,张昌民,等. 现代浅水湖盆三角洲沉积砂体形态特征:以洞庭湖和鄱阳湖为例[J]. 石油天然气学报,2012,34(10):1-7.
Yin Taiju, Li Xuanyue, Zhang Changmin, et al. Sandbody shape of modern shallow lake Basin delta sediments: By taking Dongting lake and Poyang lake for example[J]. Journal of Oil and Gas Technology, 2012, 34(10): 1-7. |
[10] |
孙廷彬,国殿斌,李中超,等. 鄱阳湖浅水三角洲分支河道分布特征[J]. 岩性油气藏,2015,27(5):144-148.
Sun Tingbin, Guo Dianbin, Li Zhongchao, et al. Distribution characteristics of branch channel of shallow delta in Poyang Lake[J]. Lithologic Reservoirs, 2015, 27(5): 144-148. |
[11] |
张昌民,尹太举,朱永进,等. 浅水三角洲沉积模式[J]. 沉积学报,2010,28(5):933-944.
Zhang Changmin, Yin Taiju, Zhu Yongjin, et al. Shallow-water deltas and models[J]. Acta Sedimentologica Sinica, 2010, 28(5): 933-944. |
[12] |
袁选俊,周红英,张志杰,等. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏,2021,33(1):1-11.
Yuan Xuanjun, Zhou Hongying, Zhang Zhijie, et al. Depositional features and growth pattern of large shallow-water deltas in Depression Basin[J]. Lithologic Reservoirs, 2021, 33(1): 1-11. |
[13] |
邹才能,赵文智,张兴阳,等. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J]. 地质学报,2008,82(6):813-825.
Zou Caineng, Wenzhi Zhaon, Zhang Xingyang, et al. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins[J]. Acta Geologica Sinica, 2008, 82(6): 813-825. |
[14] |
高志勇,周川闽,董文彤,等. 浅水三角洲动态生长过程模型与有利砂体分布:以鄱阳湖赣江三角洲为例[J]. 现代地质,2016,30(2):341-352.
Gao Zhiyong, Zhou Chuanmin, Dong Wentong, et al. Sedimentary processes, depositional model and sandbody prediction of lacustrine shallow water delta: A case study of Ganjiang river delta in Poyang lake[J]. Geoscience, 2016, 30(2): 341-352. |
[15] |
冯文杰,吴胜和,张可,等. 曲流河浅水三角洲沉积过程与沉积模式探讨:沉积过程数值模拟与现代沉积分析的启示[J]. 地质学报,2017,91(9):2047-2064.
Feng Wenjie, Wu Shenghe, Zhang Ke, et al. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition[J]. Acta Geologica Sinica, 2017, 91(9): 2047-2064. |
[16] |
唐勇,尹太举,覃建华,等. 大型浅水扇三角洲发育的沉积物理模拟实验研究[J]. 新疆石油地质,2017,38(3):253-263.
Tang Yong, Yin Taiju, Qin Jianhua, et al. Development of large-scale shallow-water fan delta: Sedimentary laboratory simulation and experiments[J]. Xinjiang Petroleum Geology, 2017, 38(3): 253-263. |
[17] |
张新涛,周心怀,李建平,等. 敞流沉积环境中“浅水三角洲前缘砂体体系”研究[J]. 沉积学报,2014,32(2):260-269.
Zhang Xintao, Zhou Xinhuai, Li Jianping, et al. Unconfined flow deposits in front sandbodies of shallow water deltaic distributary systems[J]. Acta Sedimentologica Sinica, 2014, 32(2): 260-269. |
[18] |
曾灿,尹太举,宋亚开. 湖平面升降对浅水三角洲影响的沉积数值模拟实验[J]. 地球科学,2017,42(11):2095-2104.
Zeng Can, Yin Taiju, Song Yakai. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta[J]. Earth Science, 2017, 42(11): 2095-2104. |
[19] |
白玉川,胡晓,徐海珏,等. 入湖浅水三角洲形成过程实验模拟分析[J]. 水利学报,2018,49(5):549-560.
Bai Yuchuan, Hu Xiao, Xu Haijue, et al. Experimental analysis of the formation process of lacustrine shallow-water delta[J]. Journal of Hydraulic Engineering, 2018, 49(5): 549-560. |
[20] |
黄秀,刘可禹,邹才能,等. 鄱阳湖浅水三角洲沉积体系三维定量正演模拟[J]. 地球科学:中国地质大学学报,2013,38(5):1005-1013.
Huang Xiu, Liu Keyu, Zou Caineng, et al. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang lake, southern China[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(5): 1005-1013. |
[21] |
刘翰林,邱振,徐黎明,等. 鄂尔多斯盆地陇东地区三叠系延长组浅水三角洲砂体特征及厚层砂体成因[J]. 石油勘探与开发,2021,48(1):106-117.
Liu Hanlin, Qiu Zhen, Xu Liming, et al. Distribution of shallow water delta sand bodies and the genesis of thick layer sand bodies of the Triassic Yanchang Formation, Longdong area, Ordos Basin[J]. Petroleum Exploration and Development, 2021, 48(1): 106-117. |
[22] |
孙靖,薛晶晶,吴海生,等. 远源、细粒型浅水三角洲沉积特征与演化:以准噶尔盆地腹部莫索湾地区八道湾组为例[J]. 沉积学报,2016,34(1):129-136.
Sun Jing, Xue Jingjing, Wu Haisheng, et al. Distal fine-grain shallow-water delta sedimentary characteristics and evolution: A case from Badaowan Formation in the central Junggar Basin[J]. Acta Sedimentologica Sinica, 2016, 34(1): 129-136. |
[23] |
徐振华,吴胜和,刘钊,等. 浅水三角洲前缘指状砂坝构型特征:以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例[J]. 石油勘探与开发,2019,46(2):322-333.
Xu Zhenhua, Wu Shenghe, Liu Zhao, et al. Sandbody architecture of the bar finger within shoal water delta front: Insights from the lower member of Minghuazhen Formation, Neogene, Bohai BZ25 oilfield, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2019, 46(2): 322-333. |
[24] |
房亚男,吴朝东,王熠哲,等. 准噶尔盆地南缘中—下侏罗统浅水三角洲类型及其构造和气候指示意义[J]. 中国科学:技术科学,2016,46(7):737-756.
Fang Yanan, Wu Chaodong, Wang Yizhe, et al. Lower to Middle Jurassic shallow-water delta types in the southern Junggar Basin and implications for the tectonic and climate[J]. Scientia Sinica Technologica, 2016, 46(7): 737-756. |
[25] |
朱筱敏,邓秀芹,刘自亮,等. 大型坳陷湖盆浅水辫状河三角洲沉积特征及模式:以鄂尔多斯盆地陇东地区延长组为例[J]. 地学前缘,2013,20(2):19-28.
Zhu Xiaomin, Deng Xiuqin, Liu Ziliang, et al. Sedimentary characteristics and model of shallow braided delta in large-scale lacustrine: An example from Triassic Yanchang Formation in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 19-28. |
[26] |
朱筱敏,张义娜,杨俊生,等. 准噶尔盆地侏罗系辫状河三角洲沉积特征[J]. 石油与天然气地质,2008,29(2):244-251.
Zhu Xiaomin, Zhang Yina, Yang Junsheng, et al. Sedimentary characteristics of the shallow Jurassic braided river delta, the Junggar Basin[J]. Oil & Gas Geology, 2008, 29(2): 244-251. |
[27] |
李渊,丁熊,王兴志,等. 鄂尔多斯盆地延长组长8段浅水三角洲砂体结构特征[J]. 天然气地球科学,2021,32(1):57-72.
Li Yuan, Ding Xiong, Wang Xingzhi, et al. Structural characteristics of sand bodies in shallow-water deltas in the Chang 8 member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(1): 57-72. |
[28] |
蔡全升,胡明毅,胡忠贵,等. 退积型浅水三角洲沉积演化特征及砂体展布规律:以松辽盆地北部临江地区下白垩统泉头组四段为例[J]. 石油与天然气地质,2016,37(6):903-914.
Cai Quansheng, Hu Mingyi, Hu Zhonggui, et al. Sedimentary evolution and distribution of sand bodies of retrogradational shallow-water delta: A case study from 4th member of the Cretaceous Quantou Formation in the Lingjiang area, Songliao Basin[J]. Oil & Gas Geology, 2016, 37(6): 903-914. |
[29] |
Carlson B, Piliouras A, Muto T, et al. Control of basin water depth on channel morphology and autogenic timescales in deltaic systems[J]. Journal of Sedimentary Research, 2018, 88(9): 1026-1039. |
[30] |
Olariu C, Bhattacharya J P. Terminal distributary channels and delta front architecture of river-dominated delta systems[J]. Journal of Sedimentary Research, 2006, 76(2): 212-233. |
[31] |
Wang J H, Muto T, Urata K, et al. Morphodynamics of river deltas in response to different basin water depths: An experimental examination of the grade index model[J]. Geophysical Research Letters, 2019, 46(10): 5265-5273. |
[32] |
刁帆,文志刚,邹华耀,等. 鄂尔多斯盆地陇东地区长8油层组浅水三角洲沉积特征[J]. 地球科学:中国地质大学学报,2013,38(6):1289-1298.
Diao Fan, Wen Zhigang, Zou Huayao, et al. Sedimentary characteristics of shallow-water deltas in Chang 8 oil-bearing interval in eastern Gansu, Ordos Basin[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(6): 1289-1298. |
[33] |
李彦泽,王志坤,商琳,等. 小湖盆浅水三角洲沉积特征及其等时格架划分方案:以南堡4-3区东二段为例[J]. 沉积学报,2019,37(5):1079-1086.
Li Yanze, Wang Zhikun, Shang Lin, et al. Study on sedimentary characteristics of shallow-water deltas and isochronous stratigraphic framework: An example of Ed2 of 4-3 zone of Nanpu oilfield[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1079-1086. |
[34] |
秦祎,朱世发,朱筱敏,等. 东营凹陷南缓坡浅水三角洲沉积特征与源—汇过程[J]. 地球科学,2017,42(11):2081-2094.
Qin Yi, Zhu Shifa, Zhu Xiaomin, et al. Shallow water delta sedimentation and source-to-sink process in the south slope belt, Dongying Sag[J]. Earth Science, 2017, 42(11): 2081-2094. |
[35] |
陈诚,朱怡翔,石军辉,等. 断陷湖盆浅水三角洲的形成过程与发育模式:以苏丹Muglad盆地Fula凹陷Jake地区AG组为例[J]. 石油学报,2016,37(12):1508-1517.
Chen Cheng, Zhu Yixiang, Shi Junhui, et al. The forming process and development pattern of shallow water delta in fault depression lacustrian basin: A case study of AG Formation in the Jake area in Fula Sag, Muglad Basin, Sudan[J]. Acta Petrolei Sinica, 2016, 37(12): 1508-1517. |
[36] |
尹太举,张昌民,朱永进,等. 叠覆式三角洲:一种特殊的浅水三角洲[J]. 地质学报,2014,88(2):263-272.
Yin Taiju, Zhang Changmin, Zhu Yongjin, et al. Overlapping delta: A new special type of delta formed by overlapped lobes[J]. Acta Geologica Sinica, 2014, 88(2): 263-272. |
[37] |
刘自亮,沈芳,朱筱敏,等. 浅水三角洲研究进展与陆相湖盆实例分析[J]. 石油与天然气地质,2015,36(4):596-604.
Liu Ziliang, Shen Fang, Zhu Xiaomin, et al. Progress of shallow-water delta research and a case study of continental lake basin[J]. Oil & Gas Geology, 2015, 36(4): 596-604. |
[38] |
朱永进,张昌民,尹太举. 叠覆式浅水三角洲沉积特征与沉积模拟[J]. 地质科技情报,2013,32(3):59-65.
Zhu Yongjin, Zhang Changmin, Yin Taiju. Characteristics of superimposed shallow-lacustrine delta and its experimental simulation[J]. Geological Science and Technology Information, 2013, 32(3): 59-65. |
[39] |
Muto T, Furubayashi R, Tomer A, et al. Planform evolution of deltas with graded alluvial topsets: Insights from three-dimensional tank experiments, geometric considerations and field applications[J]. Sedimentology, 2016, 63(7): 2158-2189. |
[40] |
Jerolmack D J, Mohrig D. Conditions for branching in depositional rivers[J]. Geology, 2007, 35(5): 463-466. |
[41] |
Muto T, Miao H, Parker G. How do deltas respond as they prograde over bathymetry that varies in the transverse direction?: Results of tank experiments[C]//Proceedings of the 7th IAHR symposium of river, coastal and estuarine morphodynamics. Beijing: Tsinghua University Press, 2011: 563-577. |
[42] |
王俊辉,鲜本忠. 冲积河流平衡的再认识[J]. 古地理学报,2023,25(5):1011-1031.
Wang Junhui, Xian Benzhong. Revisiting the concept of alluvial river grade[J]. Journal of Palaeogeography, 2023, 25(5): 1011-1031. |
[43] |
Kim Y, Kim W, Cheong D, et al. Piping coarse-grained sediment to a deep water fan through a shelf-edge delta bypass channel: Tank experiments[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2279-2291. |
[44] |
Jiang C, Pan S Q, Chen S L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications[J]. Geomorphology, 2017, 293: 93-107. |
[45] |
Saito Y, Wei H L, Zhou Y Q, et al. Delta progradation and Chenier Formation in the Huanghe (Yellow River) Delta, China[J]. Journal of Asian Earth Sciences, 2000, 18(4): 489-497. |
[46] |
庞家珍,司书亨. 黄河河口演变:Ⅰ.近代历史变迁[J]. 海洋与湖沼,1979,10(2):136-141.
Pang Jiazhen, Si Shuheng. The estuary changes of Huanghe river. Ⅰ. Changes in modern time[J]. Oceanologia et Limnologia Sinica, 1979, 10(2): 136-141. |
[47] |
Ganti V, Chu Z X, Lamb M P, et al. Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China[J]. Geophysical Research Letters, 2014, 41(22): 7882-7890. |
[48] |
Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21. |
[49] |
Lamb M P, Nittrouer J A, Mohrig D, et al. Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio-deltaic morphodynamics[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1): F01002. |
[50] |
王先彦,于洋. 试论河流地貌学的新进展和趋势[J]. 地质科技通报,2024,43(1):150-159.
Wang Xianyan, Yu Yang. Progress in fluvial geomorphology and trend: A brief review[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 150-159. |
[51] |
林朝棨. 台湾省通志稿,土地志·地理篇[M]. 台北市:台湾省文献委员会,1957:423-424.
Lin Chaoqi. The Taiwan topography[M]. Taiwan: Literature Committee of Taiwan, 1957: 1-423. |
[52] |
Paola C, Heller R L, Angevine C L. The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory[J]. Basin Research, 1992, 4(2): 73-90. |
[53] |
Clarke L, Quine T A, Nicholas A. An experimental investigation of autogenic behaviour during alluvial fan evolution[J]. Geomorphology, 2010, 115(3/4): 278-285. |
[54] |
Swenson J B. Relative importance of fluvial input and wave energy in controlling the timescale for distributary-channel avulsion[J]. Geophysical Research Letters, 2005, 32(23): L23404. |
[55] |
Geleynse N, Storms J E A, Walstra D J R, et al. Controls on river delta formation; insights from numerical modeling[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 217-226. |
[56] |
Gugliotta M, Saito Y. Matching trends in channel width, sinuosity, and depth along the fluvial to marine transition zone of tide-dominated river deltas: The need for a revision of depositional and hydraulic models[J]. Earth-Science Reviews, 2019, 191: 93-113. |
[57] |
Muto T, Wang J H. Autogenic shrinkage and channel destabilization of an overexpanded downstream alluvial system under steady rise of relative sea level: An experimental study[J]. Earth and Planetary Science Letters, 2024, 637: 118722. |
[58] |
Chadwick A J, Steele S, Silvestre J, et al. Effect of sea-level change on river avulsions and stratigraphy for an experimental lowland delta[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(7): e2021JF006422. |
[59] |
Martin J, Sheets B, Paola C, et al. Influence of steady base-level rise on channel mobility, shoreline migration, and scaling properties of a cohesive experimental delta[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F3): F03017, doi: 10.1029/2008JF001142. |
[60] |
Powell E J, Kim W, Muto T. Varying discharge controls on timescales of autogenic storage and release processes in fluvio-deltaic environments: Tank experiments[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F2): F02011, doi: 10.1029/2011JF002097. |
[61] |
Hoyal D C J D, Sheets B A. Morphodynamic evolution of experimental cohesive deltas[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F2): F02009, doi: 10.1029/2007JF000882. |
[62] |
van Dijk W M, van de Lageweg W I, Kleinhans M G. Formation of a cohesive floodplain in a dynamic experimental meandering river[J]. Earth Surface Processes and Landforms, 2013, 38(13): 1550-1565. |
[63] |
Lauzon R, Murray A B. Comparing the cohesive effects of mud and vegetation on delta evolution[J]. Geophysical Research Letters, 2018, 45(19): 10437-10445. |
[64] |
Tal M, Paola C. Effects of vegetation on channel morphodynamics: Results and insights from laboratory experiments[J]. Earth Surface Processes and Landforms, 2010, 35(9): 1014-1028. |
[65] |
Straub K M, Paola C, Mohrig D, et al. Compensational stacking of channelized sedimentary deposits[J]. Journal of Sedimentary Research, 2009, 79(9): 673-688. |