[1] |
Parker G. Interaction between basic research and applied engineering: A personal perspective[J]. Journal of Hydraulic Research, 1996, 34(3): 291-316. |
[2] |
Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 2006, 53(6): 1265-1287. |
[3] |
Dietrich P, Ghienne J F, Normandeau A, et al. Upslope-migrating Bedforms in a Proglacial Sandur Delta: Cyclic steps from river-derived underflows?[J]. Journal of Sedimentary Research, 2016, 86(1): 112-122. |
[4] |
Hughes Clarke J E. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature Communications, 2016, 7: 11896. |
[5] |
Normandeau A, Lajeunesse P, Poiré A G, et al. Morphological expression of bedforms formed by supercritical sediment density flows on four fjord-lake deltas of the south-eastern Canadian Shield (eastern Canada)[J]. Sedimentology, 2016, 63(7): 2106-2129. |
[6] |
Hage S, Cartigny M J B, Clare M A, et al. How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: Insights from active submarine channels[J]. Geology, 2018, 46(6): 563-566. |
[7] |
Okazaki H, Isaji S, Kurozumi T. Sedimentary facies related to supercritical-flow bedforms in foreset slopes of a Gilbert-type delta (Middle Pleistocene, central Japan)[J]. Sedimentary Geology, 2020, 399: 105613. |
[8] |
Englert R G, Hubbard S M, Cartigny M J B, et al. Quantifying the three-dimensional stratigraphic expression of cyclic steps by integrating seafloor and deep-water outcrop observations[J]. Sedimentology, 2021, 68(4): 1465-1501. |
[9] |
Tan C P, Plink-Björklund P. Morphodynamics of supercritical flow in a linked river and delta system, Daihai Lake, northern China[J]. Sedimentology, 2021, 68(4): 1606-1639. |
[10] |
Heiniö P, Davies R J. Trails of depressions and sediment waves along submarine channels on the continental margin of Espirito Santo Basin, Brazil[J]. GSA Bulletin, 2009, 121(5/6): 698-711. |
[11] |
Normark W R, Paull C K, Caress D W, et al. Fine-scale relief related to Late Holocene channel shifting within the floor of the Upper Redondo Fan, offshore southern California[J]. Sedimentology, 2009, 56(6): 1690-1704, |
[12] |
Straub K M, Mohrig D. Constructional canyons built by sheet-like turbidity currents: Observations from offshore Brunei Darussalam[J]. Journal of Sedimentary Research, 2009, 79(1): 24-39. |
[13] |
Duarte J C, Terrinha P, Rosas F M, et al. Crescent-shaped morphotectonic features in the gulf of Cadiz (offshore SW Iberia)[J]. Marine Geology, 2010, 271(3/4): 236-249. |
[14] |
Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054. |
[15] |
Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. GSA Bulletin, 2015, 127(5/6): 804-824. |
[16] |
Li L, Gong C L. Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel thalweg in the Rio Muni Basin: A joint 3-D seismic and numerical approach[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2087-2106. |
[17] |
Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels[J]. Marine and Petroleum Geology, 2013, 41: 48-61. |
[18] |
Kostic S, Casalbore D, Chiocci F, et al. Role of upper-flow-regime bedforms emplaced by sediment gravity flows in the evolution of deltas[J]. Journal of Marine Science & Engineering, 2019, 7(1):5. |
[19] |
Armitage D A, McHargue T, Fildani A, et al. Postavulsion channel evolution: Niger Delta continental slope[J]. AAPG Bulletin, 2012, 96(5): 823-843. |
[20] |
Maier K L, Fildani A, Paull C K, et al. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California[J]. Geology, 2011, 39(4): 327-330. |
[21] |
Maier K L, Fildani A, Paull C K, et al. Deep-sea channel evolution and stratigraphic architecture from inception to abandonment from high-resolution autonomous underwater vehicle surveys offshore central California[J]. Sedimentology, 2013, 60(4): 935-960. |
[22] |
Maier K L, Paull C K, Caress D W, et al. Submarine-fan development revealed by integrated high-resolution datasets from La Jolla Fan, offshore California, U.S.A.[J]. Journal of Sedimentary Research, 2020, 90(5): 468-479. |
[23] |
Gong C L, Chen L Q, West L. Asymmetrical, inversely graded, upstream-migrating cyclic steps in marine settings: Late Miocene-Early Pliocene Fish Creek-Vallecito Basin, southern California[J]. Sedimentary Geology, 2017, 360: 35-46. |
[24] |
Wang W W, Wang D W, Sun J, et al. Evolution of deepwater turbidite bedforms in the Huaguang channel-lobe transition zone revealed by 3D seismic data in the Qiongdongnan Basin, South China Sea[J]. Geomorphology, 2020, 370: 107412. |
[25] |
Maselli V, Micallef A, Normandeau A, et al. Active faulting controls bedform development on a deep-water fan[J]. Geology, 2021, 49(12): 1495-1500. |
[26] |
Casalbore D, Clare M A, Pope E L, et al. Bedforms on the submarine flanks of insular volcanoes: New insights gained from high resolution seafloor surveys[J]. Sedimentology, 2021, 68(4): 1400-1438. |
[27] |
Lang J, Sievers J, Loewer M, et al. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data[J]. Sedimentary Geology, 2017, 362: 83-100. |
[28] |
Lang J, Le Heron D P, van den Berg J H, et al. Bedforms and sedimentary structures related to supercritical flows in glacigenic settings[J]. Sedimentology, 2021, 68(4): 1539-1579. |
[29] |
Fricke A T, Sheets B A, Nittrouer C A, et al. An examination of froude-supercritical flows and cyclic steps on a subaqueous lacustrine delta, Lake Chelan, Washington, U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(7): 754-767. |
[30] |
Normark W R, Piper D J W, Posamentier H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J]. Marine Geology, 2002, 192(1/2/3): 23-58. |
[31] |
Spinewine B, Sequeiros O E, Garcia M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 2009, 79(8): 608-628. |
[32] |
Fedele J J, Hoyal D, Barnaal Z, et al. Bedforms created by gravity flows[M]//Budd D A, Hajek E A, Purkis S J. Autogenic dynamics and self-organization in sedimentary systems. Tulsa: SEPM Special Publication, 2016, 106: 95-121. |
[33] |
Komar P D. Hydraulic jumps in turbidity currents[J]. GSA Bulletin, 1971, 82(6): 1477-1488. |
[34] |
Komar P D. Supercritical flow in density currents: A discussion[J]. Journal of Sedimentary Petrology, 1975, 45: 747-749. |
[35] |
Hand B M. Supercritical flow in density currents[J]. Journal of Sedimentary Research, 1974, 44(3): 637-648. |
[36] |
Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56. |
[37] |
Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304. |
[38] |
Kostic S, Parker G. The response of turbidity currents to a canyon-fan transition: Internal hydraulic jumps and depositional signatures[J]. Journal of Hydraulic Research, 2006, 44(5): 631-653. |
[39] |
Kostic S. Upper flow regime bedforms on levees and continental slopes: Turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere, 2014, 10(6): 1094-1103. |
[40] |
Fox P J, Heezen B C, Harian A M. Abyssal anti-dunes[J]. Nature, 1968, 220(5166): 470-472. |
[41] |
Smith D P, Kvitek R, Iampietro P J, et al. Twenty-nine months of geomorphic change in Upper Monterey Canyon (2002-2005)[J]. Marine Geology, 2007, 236(1/2): 79-94. |
[42] |
Paull C K, Ussler III W, Caress D W, et al. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, offshore California[J]. Geosphere, 2010, 6(6): 755-774. |
[43] |
Fildani A, Kostic S, Covault J A, et al. Exploring a new breadth of cyclic steps on distal submarine fans[J]. Sedimentology, 2021, 68(4): 1378-1399. |
[44] |
Walker R G. Upper flow regime bed forms in turbidites of the Hatch Formation, Devonian of New York State[J]. Journal of Sedimentary Research, 1967, 37(4): 1052-1058. |
[45] |
Schmincke H U, Fisher R V, Waters A C. Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany[J]. Sedimentology, 1973, 20(4): 553-574. |
[46] |
Postma G, Cartigny M, Kleverlaan K. Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current?[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 1-6. |
[47] |
Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model[J]. Sedimentology, 2014, 61(7): 2268-2290. |
[48] |
West L M, Perillo M M, Olariu C, et al. Multi-event organization of deepwater sediments into bedforms: Long-lived, large-scale antidunes preserved in deepwater slopes[J]. Geology, 2019, 47(5): 391-394. |
[49] |
Postma G, Lang J, Hoyal D C, et al. Reconstruction of bedform dynamics controlled by supercritical flow in the channel-lobe transition zone of a deep-water delta (Sant Llorenç del Munt, north-east Spain, Eocene)[J]. Sedimentology, 2021, 68(4): 1674-1697. |
[50] |
Slootman A, Vellinga A J, Moscariello A, et al. The depositional signature of high-aggradation chute-and-pool bedforms: The build-and-fill structure[J]. Sedimentology, 2021, 68(4): 1640-1673. |
[51] |
Zhong G F, Peng X T. Transport and accumulation of plastic litter in submarine canyons—the role of gravity flows[J]. Geology, 2021, 49(5): 581-586. |
[52] |
Li S, Li W, Alves T M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, northeast South China Sea[J]. Marine Geology, 2020, 424: 106158. |
[53] |
Lu Y T, Shi B Q, Maselli V, et al. Different types of gravity-driven flow deposits and associated bedforms in the Upper Bengal Fan, offshore Myanmar[J]. Marine Geology, 2021, 441: 106609. |
[54] |
程琳燕,李磊,高毅凡,等. 琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因[J]. 海洋地质与第四纪地质,2022,42(1):37-44.
Cheng Linyan, Li Lei, Gao Yifan, et al. The characteristics and genesis of bottom cyclic steps in the Lingshui Sag of Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 37-44. |
[55] |
张春生,刘忠保,施冬,等. 涌流型浊流形成及发展的实验模拟[J]. 沉积学报,2002,20(1):25-29.
Zhang Chunsheng, Liu Zhongbao, Shi Dong, et al. The simulation experiment of surge-type turbidity current formation and development[J]. Acta Sedimentologica Sinica, 2002, 20(1): 25-29. |
[56] |
刘忠保,龚文平,王新海,等. 洪水型浊流砂体形成及分布的沉积模拟实验[J]. 石油与天然气地质,2008,29(1):26-30,37.
Liu Zhongbao, Gong Wenping, Wang Xinhai, et al. Sedimentation simulation tests on formation and distribution of flood turbidity sandbodies[J]. Oil & Gas Geology, 2008, 29(1): 26-30, 37. |
[57] |
姜涛,解习农,汤苏林,等. 浊流成因海底沉积波形成机理及其数值模拟[J]. 科学通报,2007,52(16):1945-1950.
Jiang Tao, Xie Xinong, Tang Sulin, et al. Numerical simulation on the evolution of sediment waves caused by turbidity currents[J]. Chinese Science Bulletin, 2007, 52(16): 1945-1950. |
[58] |
Jiang T, Xie X N, Wang Z F. Seismic features and origin of sediment waves in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3): 281-294. |
[59] |
Hu P, Li Y. Numerical modeling of the propagation and morphological changes of turbidity currents using a cost-saving strategy of solution updating[J]. International Journal of Sediment Research, 2020, 35(6): 587-599. |
[60] |
王越,孙永福,修宗祥,等. 海底峡谷内浊流流动与沉积特征数值模拟研究[J]. 海洋学报,2020,42(11):75-87.
Wang Yue, Sun Yongfu, Xiu Zongxiang, et al. Numerical simulation of turbidity current and sediment characteristics in submarine canyons[J]. Haiyang Xuebao, 2020, 42(11): 75-87. |
[61] |
郭彦英,黄河清. 海底浊流在坡道转换处的流动及沉积的数值模拟[J]. 沉积学报,2013,31(6):994-1000.
Guo Yanying, Huang Heqing. Numerical simulation of the flow and deposition of turbidity currents with different slope changes[J]. Acta Sedimentologica Sinica, 2013, 31(6): 994-1000. |
[62] |
Ge Z Y, Nemec W, Vellinga A J, et al. How is a turbidite actually deposited?[J]. Science Advances, 2022, 8(3): eabl9124. |
[63] |
王大伟,白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展,2018,33(1):52-65.
Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65. |
[64] |
王大伟,孙悦,司少文,等. 海底周期阶坎研究进展与挑战[J]. 地球科学进展,2020,35(9):890-901.
Wang Dawei, Sun Yue, Si Shaowen, et al. Research progress and challenges of submarine cyclic steps[J]. Advances in Earth Science, 2020, 35(9): 890-901. |
[65] |
Simons D B, Richardson E V, Nordin Jr C F. Sedimentary structures generated by flow in alluvial channels[M]//Middleton G V. Primary sedimentary structures and their hydrodynamic interpretation. Tulsa: SEPM Special Publication, 1965, 12: 34-52. |
[66] |
Gilbert G K. The transportation of débris by running water[R]. Washington: US Geological Survey, 1914: 1-263. |
[67] |
Davis W M. Structure and origin of glacial sand phtins[J]. GSA Bulletin, 1890, 1(1): 195-202. |
[68] |
Ricci-Lucchi F, Amorosi A. Bedding and internal structures[M]//Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks. Dordrecht, Netherlands: Springer, 1978: 53-59. |
[69] |
Nichols G. Sedimentology and stratigraphy[M]. 2nd ed. Chichester: Wiley-Blackwell, 2009: 50-58. |
[70] |
Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748. |
[71] |
Chow V T. Open-channel hydraulics[M]. New York: McGraw-Hill, 1959: 393-438. |
[72] |
Weirich F H. Field evidence for hydraulic jumps in subaqueous sediment gravity flows[J]. Nature, 1988, 332(6165): 626-629. |
[73] |
Slootman A, Cartigny M J B. Cyclic steps: Review and aggradation-based classification[J]. Earth-Science Reviews, 2020, 201: 102949. |
[74] |
Kennedy J F. Stationary waves and antidunes in alluvial channels[R]. Pasadena: California Institute of Technology, 1961: 1-145. |
[75] |
Kennedy J F. The mechanics of dunes and antidunes in erodible-bed channels[J]. Journal of Fluid Mechanics, 1963, 16(4): 521-544. |
[76] |
Middleton G V. Antidune cross-bedding in a large flume[J]. Journal of Sedimentary Research, 1965, 35(4): 922-927. |
[77] |
Allen J R L. Sedimentary structures: Their character and physical basis[M]. Amsterdam: Elsevier Scientific Pub. Co., 1982: 383-417. |
[78] |
Alexander J, Bridge J S, Cheel R J, et al. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds[J]. Sedimentology, 2001, 48(1): 133-152. |
[79] |
陈景山. 沉积构造[M]//冯增昭,王英华,刘焕杰,等. 中国沉积学. 北京:石油工业出版社,1994:269-301.
Chen Jingshan. Sedimentary structures[M]//Feng Zengzhao, Wang Yinghua, Liu Huanjie, et al. Sedimentology in China. Beijing: Petroleum Industry Press, 1994: 269-301. |
[80] |
Jopling A V, Richardson E V. Backset bedding developed in shooting flow in laboratory experiments[J]. Journal of Sedimentary Research, 1966, 36(3): 821-825. |
[81] |
Ono K, Plink-Björklund P. Froude supercritical flow bedforms in deepwater slope channels? Field examples in conglomerates, sandstones and fine-grained deposits[J]. Sedimentology, 2018, 65(3): 639-669. |
[82] |
Winterwerp J C, Bakker W T, Mastbergen D R, et al. Hyperconcentrated sand-water mixture flows over erodible bed[J]. Journal of Hydraulic Engineering, 1992, 118(11): 1508-1525. |
[83] |
钟广法. 超临界浊流沉积学研究进展[C]//第十六届全国古地理学及沉积学学术会议论文摘要集. 西安:中国矿物岩石地球化学学会岩相古地理专业委员会,2021:207-208.
Zhong Guangfa. Advances in supercritical turbidity current sedimentology[C]//Abstract volume of the 16th National Paleogeography and Sedimentology Conference. Xi’an: Chinese Society for Mineralogy, Petrology and Geochemistry, 2021: 207-208. |
[84] |
Vellinga A J, Cartigny M J B, Eggenhuisen J T, et al. Morphodynamics and depositional signature of low-aggradation cyclic steps: New insights from a depth-resolved numerical model[J]. Sedimentology, 2018, 65(2): 540-560. |
[85] |
Taki K, Parker G. Transportational cyclic steps created by flow over an erodible bed. Part 1. Experiments[J]. Journal of Hydraulic Research, 2005, 43(5): 488-501. |
[86] |
Slootman A, De Boer P L, Cartigny M J B, et al. Evolution of a carbonate delta generated by gateway-funnelling of episodic currents[J]. Sedimentology, 2019, 66(4): 1302-1340. |
[87] |
Yokokawa M, Hasegawa K, Kanbayashi S, et al. Formative conditions and sedimentary structures of sandy 3D antidunes: An application of the gravel step-pool model to fine-grained sand in an experimental flume[J]. Earth Surface Processes and Landforms, 2010, 35(14): 1720-1729. |
[88] |
Kostic S, Sequeiros O, Spinewine B, et al. Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-Environment Research, 2010, 3(4): 167-172. |
[89] |
Parker G, Izumi N. Purely erosional cyclic and solitary steps created by flow over a cohesive bed[J]. Journal of Fluid Mechanics, 2000, 419: 203-238. |
[90] |
Ono K, Plink-Björklund P, Eggenhuisen J T, et al. Froude supercritical flow processes and sedimentary structures: New insights from experiments with a wide range of grain sizes[J]. Sedimentology, 2021, 68(4): 1328-1357. |
[91] |
Sequeiros O E. Estimating turbidity current conditions from channel morphology: A Froude number approach[J]. Journal of Geophysical Research, 2012, 117(C4): C04003. |
[92] |
Skipper K. Antidune cross‐stratification in a turbidite sequence, Cloridorme Formation, Gaspé, Quebec[J]. Sedimentology, 1971, 17(1/2): 51-68. |
[93] |
Ventra D, Cartigny M J B, Bijkerk J F, et al. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance[J]. Geology, 2015, 43(8): 731-734. |
[94] |
Cornard P H, Pickering K T. Supercritical-flow deposits and their distribution in a submarine channel system, Middle Eocene, Ainsa Basin, Spanish Pyrenees[J]. Journal of Sedimentary Research, 2019, 89(6): 576-597. |
[95] |
Kuang Z G, Zhong G F, Wang L L, et al. Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 540-551. |
[96] |
钟广法,朱本铎,王嘹亮. 南海浊流地貌[J]. 科技导报,2020,38(18):75-82.
Zhong Guangfa, Zhu Benduo, Wang Liaoliang. Turbidity current related landforms in the South China Sea[J]. Science & Technology Review, 2020, 38(18): 75-82. |
[97] |
Baas J H. Ripple, ripple mark, ripple structure[M]//Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks. Dordrecht, Netherlands: Springer, 1978: 565-568. |
[98] |
Recking A, Bacchi V, Naaim M, et al. Antidunes on steep slopes[J]. Journal of Geophysical Research, 2009, 114(F4): F04025. |
[99] |
Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148. |
[100] |
Covault J A, Kostic S, Paull C K, et al. Cyclic Steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393: 4-20. |
[101] |
Migeon S, Savoye B, Faugeres J C. Quaternary development of migrating sediment waves in the Var deep-sea fan: Distribution, growth pattern, and implication for levee evolution[J]. Sedimentary Geology, 2000, 133(3/4): 265-293. |
[102] |
Nakajima T, Satoh M. The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel, Japan Sea[J]. Sedimentology, 2001, 48(2): 435-463. |
[103] |
Mulder T, Razin P, Faugeres J C. Hummocky cross-stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins (western Pyrenees, France)[J]. Sedimentology, 2009, 56(4): 997-1015. |
[104] |
Rust B R, Gibling M R. Three-dimensional antidunes as HCS mimics in a fluvial sandstone: The Pennsylvanian South Bar Formation near Sydney, Nova Scotia[J]. Journal of Sedimentary Research, 1990, 60(4): 540-548. |
[105] |
Yagishita K, Taira A. Grain fabric of a laboratory antidune[J]. Sedimentology, 1989, 36(6): 1001-1005. |
[106] |
Yagishita K, Ashi J, Ninomiya S, et al. Two types of plane beds under upper-flow-regime in flume experiments: Evidence from grain fabric[J]. Sedimentary Geology, 2004, 163(3/4): 229-236. |
[107] |
Fisher R V. Flow transformations in sediment gravity flows[J]. Geology, 1993, 11(5): 273-274. |
[108] |
van den Berg J H, Lang J. Sedimentary structure of inferred cyclic-step bedforms in submarine volcaniclastic slope deposits, Cuatro Calas, south-east Spain[J]. Sedimentology, 2021, 68(4): 1439-1464. |
[109] |
Xu J P. Normalized velocity profiles of field-measured turbidity currents[J]. Geology, 2010, 38(6): 563-566. |
[110] |
Paull C K, Caress D W, Ussler W, et al. High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons, offshore central California[J]. Geosphere, 2011, 7(5): 1077-1101. |