[1] Wang K, Dong S W, Yao W H, et al. Nature and evolution of Pre-Neoproterozoic continental crust in South China: A review and tectonic implications[J]. Acta Geologica Sinica (English Edition), 2020, 94(6): 1731-1756.
[2] Wang K, Dong S W, Li Z X, et al. Age and chemical composition of Archean metapelites in the Zhongxiang complex and implications for early crustal evolution of the Yangtze Craton[J]. Lithos, 2018, 320-321: 280-301.
[3] Cui X Z, Wang J, Wang X C, et al. Early crustal evolution of the Yangtze Block: Constraints from zircon U-Pb-Hf isotope systematics of 3.1-1.9 Ga granitoids in the Cuoke complex, SW China[J]. Precambrian Research, 2021, 357: 106155.
[4] Yin C Q, Lin S F, Davis D W, et al. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan orogenic belt and implications for the tectonic interpretation of South China[J]. Precambrian Research, 2013, 236: 145-156.
[5] 卢桂梅. 古—中元古代哥伦比亚超大陆裂解的动力学过程及效应[J]. 沉积与特提斯地质, 44(1):205-215.

Lu Guimei. The breakup geodynamic process and effects of the Paleo-Mesoproterozoic Columbia supercontinent[J]. Sedimentary Geology and Tethyan Geology, 44(1): 205-215.
[6] Han Q S, Peng S B. Paleoproterozoic subduction within the Yangtze Craton: Constraints from Nb-enriched mafic dikes in the Kongling complex[J]. Precambrian Research, 2020, 340: 105634.
[7] Cui X Z, Wang J, Ren G M, et al. Paleoproterozoic tectonic evolution of the Yangtze Block: New evidence from ca. 2.36 to 2.22 Ga magmatism and 1.96 Ga metamorphism in the Cuoke complex, SW China[J]. Precambrian Research, 2020, 337: 105525.
[8] 凌文黎,高山,张本仁,等. 扬子陆核古元古代晚期构造热事件与扬子克拉通演化[J]. 科学通报,2000,45(21):2343-2348.

Ling Wenli, Gao Shan, Zhang Benren, et al. The recognizing of ca. 1.95 Ga tectono-thermal eventin Kongling nucleus and its significance for the evolution of Yangtze Block, South China[J]. Chinese Science Bulletin, 2000, 45(21): 2343-2348.
[9] Deng H, Peng S B, Polat A, et al. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 2017, 289: 75-94.
[10] Hu P Y, Zhai Q G, Wang J, et al. The Shimian ophiolite in the western Yangtze Block, SW China: Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications[J]. Precambrian Research, 2017, 298: 107-122.
[11] 任光明,庞维华,潘桂棠,等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报,2017,36(11):2061-2075.

Ren Guangming, Pang Weihua, Pan Guitang, et al. Ascertainment of the Me-soproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance[J]. Geological Bulletin of China, 2017, 36(11): 2061-2075.
[12] 张国伟,郭安林,王岳军,等. 中国华南大陆构造与问题[J]. 中国科学:地球科学,2013,43(10):1553-1582.

Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 2013, 43(10): 1553-1582.
[13] Lu K, Li X H, Zhou J L, et al. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan complex[J]. Precambrian Research, 2020, 346: 105787.
[14] Li J Y, Wang X L, Wang D, et al. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction-accretion[J]. Precambrian Research, 2021, 355: 106081.
[15] 崔晓庄,江新胜,王剑,等. 川西峨边地区金口河辉绿岩脉SHRIMP锆石U-Pb年龄及其对Rodinia裂解的启示[J]. 地质通报,2012,31(7):1131-1141.

Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, et al. Zircon SHRIMP U-Pb age of Jinkouhe diabase dykes in Ebian area of western Sichuan province and its implications for the breakup of Rodinia[J]. Geological Bulletin of China, 2012, 31(7): 1131-1141.
[16] 尹福光,王冬兵,孙志明,等. 哥伦比亚超大陆在扬子陆块西缘的探秘[J]. 沉积与特提斯地质, 2012, 32(3): 31-40.

Yin Fuguang, Wang Dongbing, Sun Zhiming, et al. Columbia supercontinent: New insights from the western margin of the Yangtze landmass[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(3): 31-40.
[17] 吴鹏,张少兵,郑永飞,等. 扬子陆块西北缘早新元古代俯冲增生过程的岩浆记录[J]. 沉积与特提斯地质, 2024, 44(1): 216-230.

Wu Peng, Zhang Shaobing, Zheng Yongfeiet al. Magmatic record of Early Neoproterozoic subduction-accretion in the northwestern margin of the Yangtze Block, South China[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(1): 216-230.
[18] Yao J L, Cawood P A, Shu L S, et al. Jiangnan orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872.
[19] 耿元生,旷红伟,柳永清,等. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报,2017,91(10):2151-2174.

Geng Yuansheng, Kuang Hongwei, Liu Yongqing, et al. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 2017, 91(10): 2151-2174.
[20] 陈风霖,王剑,崔晓庄,等. 扬子西缘峨边群碎屑锆石年代学特征及其地质意义[J]. 沉积学报,2024,42(6):1936-1947.

Chen Fenglin, Wang Jian, Cui Xiaozhuang, et al. Detrital zircon U-Pb geochronology characteristics and geological significance of the Ebian Group in the western Yangtze Block[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1936-1947.
[21] Li K Z, Wang J, Cui X Z, et al. Early Neoproterozoic syncollisional S-type granites from the western Yangtze Block, South China: Implications for final closure of the back-arc basin[J]. Episodes, 2019, 42(2): 119-133.
[22] 陈风霖,谢渊,崔晓庄,等. 扬子西缘峨边群玄武岩年代学、地球化学特征及构造意义[J]. 矿物岩石,2018,38(3):76-86.

Chen Fenglin, Xie Yuan, Cui Xiaozhuang, et al. Geochronology, geochemistry and tectonic implications of basalts from the Ebian Group in the western Yangtze Block, South China[J]. Journal of Mineralogy and Petrology, 2018, 38(3): 76-86.
[23] 熊国庆,江新胜,崔晓庄,等. 扬子西缘元古宙峨边群烂包坪组地层归属及其锆石SHRIMPU-Pb年代学证据[J]. 地学前缘,2013,20(4):350-360.

Xiong Guoqing, Jiang Xinsheng, Cui Xiaozhuang, et al. Strata location of the Lanbaoping Formation of the Proterozoic E'bian Group in the western Yangtze Block and its chronological evidence of zircon SHRIMP U-Pb age[J]. Earth Science Frontiers, 2013, 20(4): 350-360.
[24] Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32(3): 247-265.
[25] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1/2): 155-170.
[26] Williams S. U-Th-Pb geochronology by ion microprobe[C]// McKibben M A, Shanks III W C, Ridley W I. Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 1998, 7: 1-35.
[27] 宋彪,张玉海,万渝生,等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评,2002,48(增刊):26-30.

Song Biao, Zhang Yuhai, Wan Yusheng, et al. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 2002, 48(Suppl): 26-30.
[28] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343.
[29] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[30] Polat A, Hofmann A W, Rosing M T. Boninite-like volcanic rocks in the 3.7-3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth[J]. Chemical Geology, 2002, 184(3/4): 231-254.
[31] Mohr P A. Crustal contamination in mafic sheets: A summary[C]//Halls H C, Fahrig W C. Mafic dyke swarms. Special Publication-Geological Association of Canada, 1987, 34: 75-80.
[32] Rudnick R L, Gao S. Composition of the continental crust[J].Treatise on Geochemistry, 2003, 3: 1-64.
[33] Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research[J]. Lithos, 2005, 79(3/4): 271-297.
[34] Weaver B L. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2/3/4): 381-397.
[35] Wilson M. Igneous petrogenesis a global tectonic approach[M]. Dordrecht: Springer, 1989: 466.
[36] Sharma M. Siberian traps[M]//Mahoney J J, Coffin M F. Large igneous provinces: Continental, oceanic, and planetary flood volcanism. Washington, DC: American Geophysical Union, 1997: 273-295.
[37] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100 (1): 14-48.
[38] Watson S. Rare earth element inversions and percolation models for Hawaii[J]. Journal of Petrology, 1993, 34(4): 763-783.
[39] Kepezhinskas P, McDermott F, Defant M J, et al. Trace element and Sr Nd Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 577-600.
[40] Zhao J H, Asimow P D. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc- and MORB-like dike swarms in South China[J]. Journal of Petrology, 2018, 59(9): 1811-1844.
[41] Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.
[42] Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan province, SW China): Implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1/2): 27-47.
[43] Robinson J A C, Wood B J. The depth of the spinel to garnet transition at the peridotite solidus[J]. Earth and Planetary Science Letters, 1998, 164(1/2): 277-284.
[44] Brewer T S, Åhäll K I, Menuge J F, et al. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism[J]. Precambrian Research, 2004, 134(3/4): 249-273.
[45] Wang W, Pandit M K, Zhao J H, et al. Slab break-off triggered lithosphere-asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India[J]. Lithos, 2018, 296-299: 281-296.
[46] Fan W M, Guo F, Wang Y J, et al. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9/10): 733-746.
[47] Wang X L, Shu L S, Xing G F, et al. Post-orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800-760 Ma volcanic rocks[J]. Precambrian Research, 2012, 222-223: 404-423.
[48] Zhang S H, Zhao Y, Santosh M. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent[J]. Precambrian Research, 2012, 222-223: 339-367.
[49] Li L M, Lin S F, Xing G F, et al. Geochemistry and tectonic implications of Late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block, South China[J]. Precambrian Research, 2013, 230: 179-192.
[50] Saunders A D, Tarney J. Geochemical characteristics of basaltic volcanism within back-arc basins[J]. Geological Society, London, Special Publications, 1984, 16(1): 59-76.
[51] Perfit M R, Gust D A, Bence A E, et al. Chemical characteristics of island-arc basalts: Implications for mantle sources[J]. Chemical Geology, 1980, 30(3): 227-256.
[52] Bussy F, Hernandez J, von Raumer J. Bimodal magmatism as consequence of the post-collisional readjustment of thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, western Alps)[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2000, 91(1/2): 221-233.
[53] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300.
[54] Winchester J A, Floyd P A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science letters, 1976, 28(3): 459-469.
[55] Bienvenu P, Bougault H, Joron J L, et al. MORB alteration: Rare-earth element/non-rare-earth hygromagmaphile element fractionation[J]. Elsevier, 1990, 82: 1-14.
[56] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30.
[57] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[M]//Hawkesworth C J, Norry M J. Continental basalts and mantle xenoliths. Nantwich, Cheshire: Shiva Publications, 1983: 230-249.
[58] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47.
[59] Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze Craton: Implications for South China’s amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21(2/3): 577-594.
[60] 白晓,凌文黎,段瑞春,等. 扬子克拉通核部中元古代—古生代沉积地层Nd同位素演化特征及其地质意义[J]. 中国科学:地球科学,2011,41(7):972-983.

Bai Xiao, Ling Wenli, Duan Ruichun, et al. Mesoproterozoic to Paleozoic Nd isotope stratigraphy of the South China continental nucleus and its geological significance[J]. Science China Earth Sciences, 2011, 41(7):972-983.
[61] Xiong X S, Gao R, Wang H Y, et al. Frozen subduction in the Yangtze Block: Insights from the deep seismic profiling and gravity anomaly in east Sichuan fold belt[J]. Earthquake Science, 2016, 29(2): 61-70.
[62] Chen F L, Cui X Z, Lin S F, et al. The earliest Neoproterozoic Nb-enriched mafic magmatism indicates subduction tectonics in the southwestern Yangtze Block, South China[J]. Precambrian Research, 2023, 384: 106938.
[63] Chen F L, Wang J, Cui X Z, et al. A latest Mesoproterozoic arc–back-arc system in the southwestern Yangtze Block, South China: Implications for paleogeographic configuration of the Rodinia supercontinent[J]. Precambrian Research, 2024, 409: 107432.