[1] Sato H, Ishikawa A, Onoue T, et al. Sedimentary record of Upper Triassic impact in the Lagonegro Basin, southern Italy: Insights from highly siderophile elements and Re-Os isotope stratigraphy across the Norian/Rhaetian boundary[J]. Chemical Geology, 2021, 586: 120506.
[2] Jin X, Ogg J G, Lu S, et al. Terrestrial record of carbon-isotope shifts across the Norian/Rhaetian boundary: A high-resolution study from northwestern Sichuan Basin, South China[J]. Global and Planetary Change, 2022, 210: 103754.
[3] Lu N, Wang Y D, Popa M E, et al. Sedimentological and paleoecological aspects of the Norian-Rhaetian transition (Late Triassic) in the Xuanhan area of the Sichuan Basin, southwest China[J]. Palaeoworld, 2019, 28(3): 334-345.
[4] Rigo M, Onoue T, Tanner L H, et al. The Late Triassic Extinction at the Norian/Rhaetian boundary: Biotic evidence and geochemical signature[J]. Earth-Science Reviews, 2020, 204: 103180.
[5] Trotter J A, Williams I S, Nicora A, et al. Long-term cycles of Triassic climate change: A new δ18O record from conodont apatite[J]. Earth and Planetary Science Letters, 2015, 415: 165-174.
[6] Casacci M, Bertinelli A, Algeo T J, et al. Carbonate-to-biosilica transition at the Norian-Rhaetian boundary controlled by rift-related subsidence in the western Tethyan Lagonegro Basin (southern Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 456: 21-36.
[7] Tanner L H, Hubert J F, Coffey B P, et al. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary[J]. Nature, 2001, 411(6838): 675-677.
[8] Schaller M F, Wright J D, Kent D V, et al. Rapid emplacement of the central Atlantic magmatic province as a net sink for CO2[J]. Earth and Planetary Science Letters, 2012, 323-324: 27-39.
[9] Williford K H, Grice K, Holman A, et al. An organic record of terrestrial ecosystem collapse and recovery at the Triassic-Jurassic boundary in East Greenland[J]. Geochimica et Cosmochimica Acta, 2014, 127: 251-263.
[10] Steinthorsdottir M, Tosolini A M P, Mcelwain J C. Evidence for insect and annelid activity across the Triassic-Jurassic transition of East Greenland[J]. Palaios, 2015, 30(8): 597-607.
[11] Dal Corso J, Mills B J W, Chu D L, et al. Permo-Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse[J]. Nature Communications, 2020, 11(1): 2962.
[12] Chen S F, Wilson C J L, Worley B A. Tectonic transition from the Songpan-Garzê fold belt to the Sichuan Basin, south-western China[J]. Basin Research, 1995, 7(3): 235-253.
[13] Li M S, Zhang Y, Huang C J, et al. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 2017, 475: 207-223.
[14] Tian N, Wang Y D, Philippe M, et al. New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 464: 65-75.
[15] Li L Q, Wang Y D, Vajda V, et al. Late Triassic ecosystem variations inferred by palynological records from Hechuan, southern Sichuan Basin, China[J]. Geological Magazine, 2018, 155(8): 1793-1810.
[16] Li L Q, Wang Y D, Kürschner W M, et al. Palaeovegetation and palaeoclimate changes across the Triassic-Jurassic transition in the Sichuan Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556: 109891.
[17] Yong Y, Allen P A, Densmore A L, et al. Evolution of the Longmen Shan Foreland Basin (western Sichuan, China) during the Late Triassic Indosinian orogeny[J]. Basin Research, 2003, 15(1): 117-138.
[18] 王永栋,付碧宏,谢小平,等. 四川盆地陆相三叠系与侏罗系[M]. 合肥:中国科学技术大学出版社,2010.

Wang Yongdong, Fu Bihong, Xie Xiaoping, et al. The terrestrial Triassic and Jurassic systems in the Sichuan Basin, China[M]. Hefei: University of Science and Technology of China Press, 2010.
[19] Li Y, Yan Z K, Liu S G, et al. Migration of the carbonate ramp and sponge buildup driven by the orogenic wedge advance in the early stage (Carnian) of the Longmen Shan Foreland Basin, China[J]. Tectonophysics, 2014, 619-620: 179-193.
[20] 李智武,刘树根,陈洪德,等. 龙门山冲断带分段—分带性构造格局及其差异变形特征[J]. 成都理工大学学报(自然科学版),2008,35(4):440-454.

Li Zhiwu, Liu Shugen, Chen Hongde, et al. Structural segmentation and zonation and differential deformation across and along the Lomgmen thrust belt, west Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(4): 440-454.
[21] 梅冥相. 中上扬子印支运动的地层学效应及晚三叠世沉积盆地格局[J]. 地学前缘. 2010,17(4):99-111.

Mei Mingxiang. Stratigraphic impact of the Indo-China Movement and its related evolution of sedimentary-basin pattern of the Late Triassic in the Middle-Upper Yangtze region, South China[J]. Earth Science Frontiers, 2010, 17(4): 99-111.
[22] Scotese C R. Atlas of Permo-Triassic paleogeographic maps (Mollweide Projection), maps 43-52, volumes 3 & 4 of the paleomap atlas for ArcGIS[M]. Evanston: Paleomap Project, 2014.
[23] 向芳,肖倩,喻显涛,等. 四川盆地元坝地区上二叠统海相凝灰沉积储层特征[J]. 石油与天然气地质,2022,43(4):889-901.

Xiang Fang, Xiao Qian, Yu Xiantao, et al. Reservoir characteristics of the Upper Permian marine tuffaceous deposits in Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(4): 889-901.
[24] Deng T, Li Y, Wang Z J, et al. Geochemical characteristics and organic matter enrichment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan Basin: Implications for paleoweathering, provenance and tectonic setting[J]. Marine and Petroleum Geology, 2019, 109: 698-716.
[25] 高彩霞,邵龙义,李长林,等. 四川盆地东部上三叠统须家河组层序地层及聚煤特征研究[J]. 古地理学报,2009,11(6):689-696.

Gao Caixia, Shao Longyi, Li Changlin, et al. Sequence stratigraphy and coal accumulation of the Upper Triassic Xujiahe Formation in eastern Sichuan Basin[J]. Journal of Palaeogeography, 2009, 11(6): 689-696.
[26] 姜在兴,田继军,陈桂菊,等. 川西前陆盆地上三叠统沉积特征[J]. 古地理学报,2007,9(2):143-154.

Jiang Zaixing, Tian Jijun, Chen Guiju, et al. Sedimentary characteristics of the Upper Triassic in western Sichuan Foreland Basin[J]. Journal of Palaeogeography, 2007, 9(2): 143-154.
[27] 郑建屏,秦镜蓉,冯建川. 四川盆地晚三叠世煤炭资源地球物理远景调查[M]. 北京:地质出版社,1992.

Zheng Jianping, Qin Jingrong, Feng Jianchuan. Geophysical prospecting of Late Triassic coal resources in Sichuan Basin[M]. Beijing: Geological Publishing House, 1992.
[28] 夏宗实,袁昌明,李汝宁. 四川盆地陆相中生代地层古生物[M]. 成都:四川人民出版社,1982.

Xia Zhongshi, Yuan Changming, Li Luning. Paleontology of continental Mesozoic strata in Sichuan Basin[M]. Chengdu: Sichuan People's Publishing House, 1982.
[29] Maron M, Rigo M, Bertinelli A, et al. Magnetostratigraphy, biostratigraphy, and chemostratigraphy of the Pignola-Abriola section: New constraints for the Norian-Rhaetian boundary[J]. GSA Bulletin, 2015, 127(7/8): 962-974.
[30] Bertinelli A, Casacci M, Concheri G, et al. The Norian/Rhaetian boundary interval at Pignola-Abriola section (southern Apennines, Italy) as a GSSP candidate for the Rhaetian Stage: An update[J]. Albertiana, 2016, 43: 5-18.
[31] Rigo M, Bertinelli A, Concheri G, et al. The Pignola-Abriola section (southern Apennines, Italy): A new GSSP candidate for the base of the Rhaetian Stage[J]. Lethaia, 2016, 49(3): 287-306.
[32] Kent D V, Olsen P E, Muttoni G. Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages[J]. Earth-Science Reviews, 2017, 166: 153-180.
[33] Muttoni G, Kent D V, Jadoul F, et al. Rhaetian magneto-biostratigraphy from the southern Alps (Italy): Constraints on Triassic chronology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(1/2): 1-16.
[34] Hüsing S K, Deenen M H L, Koopmans J G, et al. Magnetostratigraphic dating of the proposed Rhaetian GSSP at Steinbergkogel (Upper Triassic, Austria): Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 203-216.
[35] Ruxton B P. Measures of the degree of chemical weathering of rocks[J]. The Journal of Geology, 1968, 76(5): 518-527.
[36] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[37] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
[38] Price J R, Velbel M A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J]. Chemical Geology, 2003, 202(3/4): 397-416.
[39] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
[40] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[41] Rasmussen C, Brantley S, Richter D D, et al. Strong climate and tectonic control on plagioclase weathering in granitic terrain[J]. Earth and Planetary Science Letters, 2011, 301(3/4): 521-530.
[42] Yang S L, Ding F, Ding Z L. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan[J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1695-1709.
[43] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
[44] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Geological Society of America, 1993: 21-40.
[45] Yang J H, Cawood P A, Du Y S, et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. GSA Bulletin, 2016, 128(5/6): 739-751.
[46] Garzanti E, Padoan M, Setti M, et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial Upper Nile and Congo muds[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(2): 292-316.
[47] Young G M. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: Relevance to the snowball Earth debate[J]. Journal of African Earth Sciences, 2002, 35(4): 451-466.
[48] Yan D T, Chen D Z, Wang Q C, et al. Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze Block, South China[J]. Geology, 2010, 38(7): 599-602.
[49] Chittleborough D J. Indices of weathering for soils and palaeosols formed on silicate rocks[J]. Australian Journal of Earth Sciences, 1991, 38(1): 115-120.
[50] Long X P, Sun M, Yuan C, et al. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution[J]. Sedimentary Geology, 2008, 208(3/4): 88-100.
[51] Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1659-1666.
[52] Asiedu D K, Agoe M, Amponsah P O, et al. Geochemical constraints on provenance and source area weathering of metasedimentary rocks from the Paleoproterozoic (~2.1 Ga) Wa-Lawra Belt, southeastern margin of the West African Craton[J]. Geodinamica Acta, 2019, 31(1): 27-39.
[53] 袁宝印,陈克造, Bowler J M,等. 青海湖的形成与演化趋势[J]. 第四纪研究,1990,10(3):233-243.

Yuan Baoyin, Chen Kezao, Bowler J M, et al. The formation and evolution of the Qinghai Lake[J]. Quaternary Sciences, 1990, 10(3): 233-243.
[54] 马宝林,王琪. 青海湖现代沉积物的元素分布特征[J]. 沉积学报,1997,15(3):120-125.

Ma Baolin, Wang Qi, Distribution characteristics of elements in modern sediments of Qinghai Lake[J]. Acta Sedimentologica Sinica, 1997,15(3): 120-125.
[55] 徐小涛,邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,2018,20(3):515-522.

Xu Xiaotao, Shao Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 2018, 20(3): 515-522.
[56] Sun S, Chen A Q, Hou M C, et al. Rapid climatic fluctuations during the Guadalupian-Lopingian transition: Implications from weathering indices recorded in acid-insoluble residues of carbonate rocks, South China[J]. Journal of Asian Earth Sciences, 2022, 230: 105222.
[57] Dai X D, Du Y S, Ziegler M, et al. Middle Triassic to Late Jurassic climate change on the northern margin of the South China Plate: Insights from chemical weathering indices and clay mineralogy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585: 110744.
[58] Fedo C M, Eriksson K A, Krogstad E J. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1751-1763.
[59] Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959-1975.
[60] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
[61] Luo L, Qi J F, Zhang M Z, et al. Detrital zircon U-Pb ages of Late Triassic-Late Jurassic deposits in the western and northern Sichuan Basin margin: Constraints on the foreland basin provenance and tectonic implications[J]. International Journal of Earth Sciences, 2014, 103(6): 1553-1568.
[62] Shao T B, Cheng N F, Song M S. Provenance and tectonic-paleogeographic evolution: Constraints from detrital zircon U-Pb ages of Late Triassic-Early Jurassic deposits in the northern Sichuan Basin, central China[J]. Journal of Asian Earth Sciences, 2016, 127: 12-31.
[63] Gaillardet J, Dupré B, Allègre C J. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?[J]. Geochimica et Cosmochimica Acta, 1999, 63(23/24): 4037-4051.
[64] van de Kamp P C, Leake B E. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1985, 76(4): 411-449.
[65] Barshad I. The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks[J]. Proceedings International Clay Conference, 1966: 167-173.
[66] 王鸿祯. 中国古地理图集[M]. 北京:地图出版社,1985.

Wang Hongzhen. Atlas of the palaeogeography of China[M]. Beijing: Map Publishing House, 1985.
[67] Pang H L, Pan B T, Garzanti E, et al. Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance[J]. Chemical Geology, 2018, 488: 76-86.
[68] Jian X, Guan P, Zhang W, et al. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: Implications for provenance and weathering[J]. Chemical Geology, 2013, 360-361: 74-88.
[69] Bouchez J, Gaillardet J, France-Lanord C, et al. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.
[70] Lupker M, France-Lanord C, Galy V, et al. Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2013, 365: 243-252.
[71] Schatz A K, Scholten T, Kühn P. Paleoclimate and weathering of the Tokaj (Hungary) loess-paleosol sequence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 170-182.
[72] Berra F, Jadoul F, Anelli A. Environmental control on the end of the Dolomia Principale/Hauptdolomit depositional system in the central Alps: Coupling sea-level and climate changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 138-150.
[73] Berra F. Sea-level fall, carbonate production, rainy days: How do they relate? Insight from Triassic carbonate platforms (western Tethys, southern Alps, Italy)[J]. Geology, 2012, 40(3): 271-274.
[74] Schaller M F, Wright J D, Kent D V. A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering[J]. Geological Society of America Bulletin, 2015, 127(5/6): 661-671.
[75] Zaffani M, Agnini C, Concheri G, et al. The Norian “chaotic carbon interval”: New clues from the δ13Corg record of the Lagonegro Basin (southern Italy)[J]. Geosphere, 2017, 13(4): 1133-1148.
[76] Ernst R E, Buchan K L. The use of mafic dike swarms in identifying and locating mantle plumes[J]. Geological Society of America Special Papers, 2001, 352: 247-265.
[77] Haq B U. Triassic eustatic variations reexamined[J]. GSA Today, 2018, 28(12): 4-9.
[78] Sun Y D, Orchard M J, Kocsis Á T, et al. Carnian-Norian (Late Triassic) climate change: Evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics[J]. Earth and Planetary Science Letters, 2020, 534: 116082.
[79] Van Konijnenburg-Van Cittert J H A. Ecology of some Late Triassic to Early Cretaceous ferns in Eurasia[J]. Review of Palaeobotany and Palynology, 2002, 119(1/2): 113-124.
[80] Abbink O A. Palynological investigations in the Jurassic of the North Sea region[M]. LPP Foundation, 1998: 192.
[81] Philippe M, Thevenard F. Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: Palaeoclimatological implications for the Jurassic of western Europe[J]. Review of Palaeobotany and Palynology, 1996, 91(1/2/3/4): 353-370.
[82] Amiot R, Wang X, Zhou Z H, et al. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5179-5183.
[83] Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1/2/3/4): 1-26.
[84] Kent D V, Olsen P E. Magnetic polarity stratigraphy and paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy Basin (Canada): Implications for Early Mesozoic tropical climate gradients[J]. Earth and Planetary Science Letters, 2000, 179(2): 311-324.
[85] Kutzbach J E, Gallimore R G. Pangaean climates: Megamonsoons of the megacontinent[J]. Journal of Geophysical Research, 1989, 94(D3): 3341-3357.
[86] de Wever P, O’Dogherty L, Goričan Š. Monsoon as a cause of radiolarite in the Tethyan realm[J]. Comptes Rendus Geoscience, 2014, 346(11/12): 287-297.
[87] Pole M, Wang Y D, Dong C, et al. Fires and storms:A Triassic-Jurassic transition section in the Sichuan Basin, China[J]. Palaeobiodiversity and Palaeoenvironments, 2018, 98(1): 29-47.
[88] Tanner L H. Climates of the Late Triassic: Perspectives, proxies and problems[M]//Tanner L H. The Late Triassic world: Earth in a time of transition. Cham: Springer International Publishing, 2018: 59-90.
[89] Song Y, Algeo T J, Wu W J, et al. Distribution of pyrolytic PAHs across the Triassic-Jurassic boundary in the Sichuan Basin, southwestern China: Evidence of wildfire outside the central Atlantic magmatic province[J]. Earth-Science Reviews, 2020, 201: 102970.
[90] 徐兆辉,汪泽成,胡素云,等. 四川盆地上三叠统须家河组沉积时期古气候[J]. 古地理学报,2010,12(4):415-424.

Xu Zhaohui, Wang Zecheng, Hu Suyun, et al. Paleoclimate during depositional period of the Upper Triassic Xujiahe Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2010, 12(4): 415-424.
[91] Preto N, Kustatscher E, Wignall P B. Triassic climates:State of the art and perspectives[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 1-10.
[92] 钱利军,时志强,李智武,等. 四川盆地西缘地区上三叠统须家河组化石木年轮的古气候意义[J]. 沉积学报,2010,28(2):324-330.

Qian Lijun, Shi Zhiqiang, Li Zhiwu, et al. Fossil wood of the Upper Triassic Xujiahe Formation on the western margin of Sichuan Basin: Implication for palaeoclimate[J]. Acta Sedimentologica Sinica, 2010, 28(2): 324-330.
[93] Haas J, Demény A. Early dolomitisation of Late Triassic platform carbonates in the Transdanubian range (Hungary)[J]. Sedimentary Geology, 2002, 151(3/4): 225-242.
[94] Ahlberg A, Arndorff L, Guy-Ohlson D. Onshore climate change during the Late Triassic marine inundation of the Central European Basin[J]. Terra Nova, 2002, 14(4): 241-248.
[95] Cesar J, Grice K. Molecular fingerprint from plant biomarkers in Triassic-Jurassic petroleum source rocks from the Dampier sub-basin, northwest shelf of Australia[J]. Marine and Petroleum Geology, 2019, 110: 189-197.
[96] Therrien F, Fastovsky D E. Paleoenvironments of Early Theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona[J]. Palaios, 2000, 15(3): 194-211.
[97] Nakada R, Ogawa K, Suzuki N, et al. Late Triassic compositional changes of aeolian dusts in the pelagic Panthalassa: Response to the continental climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 61-75.
[98] 胡修棉,李娟,韩中,等. 中新生代两类极热事件的环境变化、生态效应与驱动机制[J]. 中国科学(D辑):地球科学,2020,50(8):1023-1043.

Hu Xiumian, Li Juan, Han Zhong, et al. Two types of hyperthermal events in the Mesozoic-Cenozoic: Environmental impacts, biotic effects, and driving mechanisms[J]. Science China (Seri. D): Earth Sciences, 2020, 50(8): 1023-1043.
[99] Shen S Z, Ramezani J, Chen J, et al. A sudden end-Permian mass extinction in South China[J]. GSA Bulletin, 2019, 131(1/2): 205-223.
[100] Sun Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338(6105): 366-370.
[101] Kuroda J, Hori R S, Suzuki K, et al. Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site[J]. Geology, 2010, 38(12): 1095-1098.
[102] Nozaki T, Nikaido T, Onoue T, et al. Triassic marine Os isotope record from a pelagic chert succession, Sakahogi section, Mino Belt, southwest Japan[J]. Journal of Asian Earth Sciences: X, 2019, 1: 100004.
[103] Zaffani M, Jadoul F, Rigo M. A new Rhaetian δ13Corg record: Carbon cycle disturbances, volcanism, End-Triassic mass Extinction (ETE)[J]. Earth-Science Reviews, 2018, 178: 92-104.
[104] 杨博. 新疆准噶尔盆地东部中侏罗世煤中古野火事件及其气候指示意义[D]. 乌鲁木齐:新疆大学,2021.

Yang Bo. Paleowildfire events and its climatic implications in Middle Jurassic coal seams in eastern Junggar Basin, Xinjiang[D]. Urumqi: Xinjiang University, 2021.
[105] Ziegler A, Eshel G, Rees P M, et al. Tracing the tropics across land and sea: Permian to present[J]. Lethaia, 2003, 36(3): 227-254.
[106] Tanner L H, Lucas S G. Stratigraphic distribution and significance of a 15 million-year record of fusain in the Upper Triassic Chinle Group, southwestern USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 261-271.
[107] Byers B A, Ash S R, Chaney D, et al. First known fire scar on a fossil tree trunk provides evidence of Late Triassic wildfire[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411: 180-187.
[108] Uhl D, Montenari M. Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany[J]. Geological Journal, 2011, 46(1): 34-41.
[109] Petersen H I, Lindström S. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary[J]. PLoS One, 2012, 7(10): e47236.
[110] Marynowski L, Simoneit B R T. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons[J]. Palaios, 2009, 24(12): 785-798.