[1] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944.

Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.
[2] 张昌民,张尚锋,李少华,等. 中国河流沉积学研究20年[J]. 沉积学报,2004,22(2):183-192.

Zhang Changmin, Zhang Shangfeng, Li Shaohua, et al. Advances in Chinese fluvial sedimentology from 1983 to 2003[J]. Acta Sedimentologica Sinica, 2004, 22(2): 183-192.
[3] 张昌民,王绪龙,陈哲,等. 季节性河道与暂时性河道的沉积特征:以新疆白杨河冲积扇为例[J]. 沉积学报,2020,38(3):505-517.

Zhang Changmin, Wang Xulong, Chen Zhe, et al. Sedimentary characteristics of ephemeral and intermittent channels: A case study of the Baiyanghe fan, Xinjiang, China[J]. Acta Sedimentologica Sinica, 2020, 38(3): 505-517.
[4] 贾爱林,郭智,郭建林,等. 中国储层地质模型30年[J]. 石油学报,2021,42(11):1506-1515.

Jia Ailin, Guo Zhi, Guo Jianlin, et al. Research achievements on reservoir geological modeling of China in the past three decades[J]. Acta Petrolei Sinica, 2021, 42(11): 1506-1515.
[5] Weissmann G S, Hartley A J, Nichols G J, et al. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems[J]. Geology, 2010, 38(1): 39-42.
[6] 张昌民,张祥辉, Hartley A J,等. 分支河流体系分类初探[J]. 岩性油气藏,2023,35(4):1-15.

Zhang Changmin, Zhang Xianghui, Hartley A J, et al. On classification of distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(4): 1-15.
[7] 刘宗堡,张云峰,刘云燕,等. 末端扇沉积体系研究现状及石油地质意义[J]. 中国矿业大学学报,2018,47(3):520-530,537.

Liu Zongbao, Zhang Yunfeng, Liu Yunyan, et al. Status quo of the terminal fan sedimentary system study and its petroleum geological significance[J]. Journal of China University of Mining & Technology, 2018, 47(3): 520-530, 537.
[8] 张金亮. 曲流河扇相模式及应用[J]. 地质论评,2022,68(2):408-430.

Zhang Jinliang. The facies model of a meandering fluvial fan and its application[J]. Geological Review, 2022, 68(2): 408-430.
[9] Rust B R. A classification of alluvial channel systems[M]//Miall A D. Fluvial sedimentology. Calgary, Alta: Canadian Society of Petroleum Geologists, 1978: 187-198.
[10] 王随继,尹寿鹏. 网状河流和分汊河流的河型归属讨论[J]. 地学前缘,2000,7(增刊2):79-86.

Wang Suiji, Yin Shoupeng. Discussion on channel patterns of anastomosing and anabranched rivers[J]. Earth Science Frontiers, 2000, 7(Suppl.2): 79-86.
[11] 李胜利,于兴河,姜涛,等. 河流辫:曲转换特点与废弃河道模式[J]. 沉积学报,2017,35(1):1-9.

Li Shengli, Yu Xinghe, Jiang Tao, et al. Meander-braided transition features and abandoned channel patterns in fluvial environment[J]. Acta Sedimentologica Sinica, 2017, 35(1): 1-9.
[12] 张元福,戴鑫,王敏,等. 河流扇的概念、特征及意义[J]. 石油勘探与开发,2020,47(5):947-957.

Zhang Yuanfu, Dai Xin, Wang Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5): 947-957.
[13] 耿鋆. 柴达木盆地南部大气降尘中可溶盐时空分布特征及物源探讨[D]. 青海:中国科学院大学(中国科学院青海盐湖研究所),2021:1-123.

Geng Jun. Temporal and spatial distribution characteristics and discussion on provenance of soluble salt in atmospheric dustfall in the south of Oaidam Basin[D]. Qinghai: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2021: 1-123.
[14] 雷玉红,王发科,侯岳,等. 格尔木地区气候资源变化特征及对农业生产的影响[J]. 江苏农业科学,2021,49(15):221-227.

Lei Yuhong, Hong Fake, Hou Yue, et al. Characteristics of climate resource change in Golmud area and its influence on agricultural production[J]. Jiangsu Agricultural Sciences, 2021, 49(15): 221-227.
[15] Zhang X H, Zhang C M, Feng W J, et al. Application of remote sensing in the description of fluvial system in dryland: A case study of Golmud distributive fluvial system, Qaidam Basin, NW China[J]. Journal of Palaeogeography, 2022, 11(4): 601-617.
[16] 朱晓倩,金晓媚,张绪财,等. 格尔木河流域山前平原区蒸散量的分布特征[J]. 水文地质工程地质,2019,46(5):55-64.

Zhu Xiaoqian, Jin Xiaomei, Zhang Xucai, et al. Distribution characteristics of evapotranspiration in the valley piedmont plain of the Golmud River basin[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 55-64.
[17] 乔帅,潘蔚琳,班超,等. 基于瑞利激光雷达对格尔木地区中间层逆温层特征分析[J]. 空间科学学报,2019,39(1):84-92.

Qiao Shuai, Pan Weilin, Ban Chao, et al. Characterization of mesospheric inversion layer with rayleigh lidar data over Golmud[J]. Chinese Journal of Space Science, 2019, 39(1): 84-92.
[18] 汪生斌,祁泽学,贺海松,等. 格尔木河流域植被覆盖时空分布规律及影响因素[J]. 中国农村水利水电,2017(10):65-69.

Wang Shengbin, Qi Zexue, He Haisong, et al. Laws of temporal-spatial distribution of vegetation and an analysis of the influencing factors in the Golmud River basin[J]. China Rural Water and Hydropower, 2017(10): 65-69.
[19] 朱建佳,陈辉,邢星,等. 柴达木盆地荒漠植物水分来源定量研究:以格尔木样区为例[J]. 地理研究,2015,34(2):285-292.

Zhu Jianjia, Chen Hui, Xing Xing, et al. Quantification analysis of water sources of desert plants in Qaidam Basin: A case study of Golmud plot[J]. Geographical Research, 2015, 34(2): 285-292.
[20] 何幼斌,王文广. 沉积岩与沉积相[M]. 2版. 北京:石油工业出版社,2017:1-378.

He Youbin, Wang Wenguang. Sedimentary rock and sedimentary facies[M]. 2nd ed. Beijing: Petroleum Industry Press, 2017: 1-378.
[21] 刘警阳,刘宗堡,曹兰柱,等. 松花江干流中下游河型转化控制因素研究[J]. 沉积学报,2023,41(2):485-497.

Liu Jingyang, Liu Zongbao, Cao Lanzhu, et al. Influences affecting river pattern transformation in the middle and lower reaches of main stream, Songhua River [J]. Acta Sedimentologica Sinica, 2023, 41(2): 485-497.
[22] 李胜利,马水平,周练武,等. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示[J]. 地球科学,2022,47(11):3960-3976.

Li Shengli, Ma Shuiping, Zhou Lianwu, et al. Main influencing factors of braided-meander transition and coexistence characteristics and implications of ancient fluvial sedimentary environment reconstruction[J]. Earth Science, 2022, 47(11): 3960-3976.
[23] 胡赛寅,刘宗堡,卢志霖. 嫩江上游河型转化控制因素及转化模式[J]. 地理研究,2023,42(3):747-760.

Hu Saiyin, Liu Zongbao, Lu Zhilin, et al. Controlling influences and models of river pattern transformation in the upstream of the Nenjiang River[J]. Geographical Research, 2023, 42(3): 747-760.
[24] 魏豪,李嘉光,谭虎成. 塔里木盆地和田河汇流区的平面形态演变[J]. 地球科学,2023,48(1):359-374.

Wei Hao, Li Jiaguang, Tan Hucheng, et al. Channel morphological evolution in confluence area of Hotan River in Tarim Basin[J]. Earth Science, 2023, 48(1): 359-374.
[25] Rosgen D L. A classification of natural rivers[J]. CATENA, 1994, 22(3): 169-199.
[26] Weissmann G S, Hartley A J, Scuderi L A, et al. Prograding distributive fluvial systems-geomorphic models and ancient examples[M]//Driese S G, Nordt L C. New frontiers in paleopedology and terrestrial paleoclimatology: Paleosols and soil surface analog systems. Tulsa: Society for Sedimentary Geology, 2013: 131-147.
[27] Davidson S K, Hartley A J, Weissmann G S, et al. Geomorphic elements on modern distributive fluvial systems[J]. Geomorphology, 2013, 180-181: 82-95.
[28] Goswami C C, Jana P, Weber C J. Evolution of landscape in a piedmont section of eastern Himalayan foothills along India-Bhutan border: A tectono-geomorphic perspective[J]. Journal of Mountain Science, 2019, 16(12): 2828-2843.
[29] Lo E L, McGlue M M, Silva A, et al. Fluvio-lacustrine sedimentary processes and landforms on the distal Paraguay fluvial megafan (Brazil)[J]. Geomorphology, 2019, 342: 163-175.
[30] 石雨昕,高志勇,周川闽,等. 新疆博斯腾湖北缘现代冲积扇与扇三角洲平原分支河流体系的沉积特征与意义[J]. 石油学报,2019,40(5):542-556.

Shi Yuxin, Gao Zhiyong, Zhou Chuanmin, et al. Sedimentary characteristics and significance of distributive fluvial system of modern alluvial fan and fan delta plain in the northern margin of Bosten Lake, Xinjiang[J]. Acta Petrolei Sinica, 2019, 40(5): 542-556.
[31] McKellar Z, Hartley A. Caledonian foreland basin sedimentation: A new depositional model for the Upper Silurian-Lower Devonian Lower Old Red Sandstone of the Midland Valley Basin, Scotland[J]. Basin Research, 2021, 33(1): 754-778.
[32] Zhang X H, Zhang C M, Feng W J, et al. Sedimentary characte-ristics of distributive fluvial system in arid area: A case study of the Shule River distributive fluvial system, NW China[J]. Petroleum Exploration and Development, 2021, 48(4): 877-888.
[33] Zhang X H, Zhang C M, Hartley A, et al. The research of river morphology transition and sediment variation: Shule River, northwest of China[J]. Geoenergy Science and Engineering, 2023, 221: 211396.
[34] Owen A, Nichols G J, Hartley A J, et al. Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States[J]. Basin Research, 2017, 29(1): 64-80.
[35] Owen A, Nichols G J, Hartley A J, et al. Quantification of a distributive fluvial system: The salt wash DFS of the Morrison Formation, SW U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(5): 544-561.
[36] 张昌民,宋新民,支东明,等. 陆相含油气盆地沉积体系再思考:来自分支河流体系的启示[J]. 石油学报,2020,41(2):127-153.

Zhang Changmin, Song Xinmin, Zhi Dongming, et al. Rethinking on the sedimentary system of terrestrial petroliferous basins: Insights from distributive fluvial system[J]. Acta Petrolei Sinica, 2020, 41(2): 127-153.
[37] 张昌民,张祥辉,王庆,等. 分支河流体系沉积学工作框架与流程[J]. 岩性油气藏,2023,35(6):1-13.

Zhang Changmin, Zhang Xianghui, Wang Qing, et al. Research framework for distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(6): 1-13.
[38] 张昌民,张祥辉,朱锐,等. 分支河流体系研究进展及应用前景展望[J]. 岩性油气藏,2023,35(5):11-25.

Zhang Changmin, Zhang Xianghui, Zhu Rui, et al. Research progress and application prospect of distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(5): 11-25.