[1] Vail P R, Gerald R B. Sequene stratigraphic concepts apploed to Paleogene outcrops, gulf and Atlantic, sea-level changes: An integrated approach[C]. SPEM Special Publication, 1988, 42: 309-328.
[2] Hinnov L A. Earth’s orbital parameters and cycle stratigraphy[M]//Gradstein F M, Ogg J G, Smith A G. A geologic time scale. Cambridge: Cambridge University Press, 2004: 55-62.
[3] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428.

Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428.
[4] 丁莲芳. 晚前寒武纪重要生物事件与事件地层界线[J]. 西安地质学院学报,1994,16(4):10-16.

Ding Lianfang. Important biota events and the event stratigraphy boundary in the Late Precambrian[J]. Journal of Xi’an College of Geology, 1994, 16(4): 10-16.
[5] Montilla L A, Martínez M, Márquez G, et al. Geochemistry and chemostratigraphy of the Colón-Mito Juan units (Campanian-Maastrichtian), Venezuela: Implications for provenance, depositional conditions, and stratigraphic subdivision[J]. Geochemical Journal, 2013, 47(5): 537-546.
[6] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3): 699-718.
[7] McFadden P L, McElhinny M W. Classification of the reversal test in palaeomagnetism[J]. Geophysical Journal International, 1990, 103(3): 725-729.
[8] 刘光泓,张世红,吴怀春. 前寒武纪旋回地层学研究的进展与挑战[J]. 地层学杂志,2020,44(3):239-249.

Liu Guanghong, Zhang Shihong, Wu Huaichun. Progress and challenges in Precambrian cyclostratigraphy research[J]. Journal of Stratigraphy, 2020, 44(3): 239-249.
[9] 王鸿祯. 论中国前寒武纪地质时代及年代地层的划分[J]. 地球科学:中国地质大学学报,1986,11(5):447-453.

Wang Hongzhen. Precambrian geochronologic and chronostratigraphic subdivision of China[J]. Earth Science: Journal of China University of Geosciences, 1986, 11(5): 447-453.
[10] 邹雨. 华北和扬子陆块中新元古代化学地层对比及意义[D]. 北京:中国矿业大学(北京),2020.

Zou Yu. Meso-Neoproterozoic chemostratigraphic correlation and significance in North China and Yangtze Block[D]. Beijing: China University of Mining & Technology (Beijing), 2020.
[11] 田成静,李明坤. 磁性地层学定年在中国近海及海域沉积物中的应用与进展[J]. 南海地质研究,2016(1):112-127.

Tian Chengjing, Li Mingkun. Application and progress of magnetostratigraphy dating in coastal and marine sediments of China[J]. Gresearch of Eological South China Sea, 2016(1): 112-127.
[12] Knoll A H, Walter M R, Narbonne G M, et al. The Ediacaran period: A new addition to the geologic time scale[J]. Lethaia, 2006, 39(1): 13-30.
[13] Gradstein F M‚ Ogg J G, Smith A G, et al. A new geologic time scale‚ with special reference to Precambrian and Neogene[J]. Episodes, 2004, 27(2): 83-100.
[14] 苏文博. 2012年全球前寒武纪新年表与中国中元古代年代地层学研究[J]. 地学前缘,2014,21(2):119-138.

Su Wenbo. A review of the revised Precambrian Time Scale (GTS2012) and the research of the Mesoproterozoic chronostratigraphy of China[J]. Earth Science Frontiers, 2014, 21(2): 119-138.
[15] 代雅然,张嘉玮,彭松柏,等. 贵州梵净山地区新元古代拉伸纪岩浆演化时序[J]. 地质通报,2019,38(2/3):360-370.

Dai Yaran, Zhang Jiawei, Peng Songbai, et al. Geochronologic sequence of Neoproterozoic Tonian magmatism in Fanjingshan area, Guizhou province[J]. Geological Bulletin of China, 2019, 38(2/3): 360-370.
[16] 高林志,戴传固,刘燕学,等. 黔东南—桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J]. 地质通报,2010,29(9):1259-1267.

Gao Linzhi, Dai Chuangu, Liu Yanxue, et al. Zircon SHRIMP U-Pb dating of tuff bed of the Sibao Group in southeastern Guizhou-northern Guangxi area, China and its stratigraphic implication[J]. Geological Bulletin of China, 2010, 29(9): 1259-1267.
[17] 高林志,戴传固,刘燕学,等. 黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及其地层意义[J]. 中国地质,2010,37(4):1071-1080.

Gao Linzhi, Dai Chuangu, Liu Yanxue, et al. Zircon SHRIMP U-Pb dating of the tuffaceous bed of Xiajiang Group in Guizhou province and its stratigraphic implication[J]. Geology in China, 2010, 37(4): 1071-1080.
[18] 薛怀民,马芳,宋永勤. 江南造山带西南段梵净山地区镁铁质—超镁铁质岩:形成时代、地球化学特征与构造环境[J]. 岩石学报,2012,28(9):3015-3030.

Xue Huaimin, Ma Fang, Song Yongqin. Mafic-ultramafic rocks from the Fanjingshan region, southwestern margin of the Jiangnan orogenic belt: Ages, geochemical characteristics and tectonic setting[J]. Acta Petrologica Sinica, 2012, 28(9): 3015-3030.
[19] 张传恒,高林志,史晓颖,等. 梵净山群火山岩锆石SHRIMP年龄及其年代地层学意义[J]. 地学前缘,2014,21(2):139-143.

Zhang Chuanheng, Gao Linzhi, Shi Xiaoying, et al. SHRIMP age of the volcanic rock from the Fanjingshan Group and its chronostratigraphic significances[J]. Earth Science Frontiers, 2014, 21(2): 139-143.
[20] 覃永军,杜远生,牟军,等. 黔东南地区新元古代下江群的地层年代及其地质意义[J]. 地球科学,2015,40(7):1107-1131.

Qin Yongjun, Du Yuansheng, Mou Jun, et al. Geochronology of Neoproterozoic Xiajiang Group in southeast Guizhou, South China, and its geological implications[J]. Earth Science, 2015, 40(7): 1107-1131.
[21] 李利阳,游国庆,张传恒,等. 桂北四堡群火山岩锆石SHRIMP年龄及其地层学意义[J]. 中国地质,2016,43(6):1992-1998.

Li Liyang, You Guoqing, Zhang Chuanheng, et al. SHRIMP age of the lava from the Sibao Group in Guilin and its chronostratigraphic significance[J]. Geology in China, 2016, 43(6): 1992-1998.
[22] 崔晓庄,江新胜,邓奇,等. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示[J]. 大地构造与成矿学,2016,40(5):1049-1063.

Cui Xiaozhuang, Jiang Xinsheng, Deng Qi, et al. Zircon U-Pb geochronological results of the Danzhou Group in northern Guangxi and their implications for the Neoproterozoic rifting stages in South China[J]. Geotectonica et Metallogenia, 2016, 40(5): 1049-1063.
[23] 寇彩化,刘燕学,李江,等. 江南造山带西段桂北四堡地区830 Ma辉长岩锆石SIMS U-Pb年代学和岩石地球化学特征及其岩石成因研究[J]. 地学前缘,2022,29(2):218-233.

Kou Caihua, Liu Yanxue, Li Jiang, et al. Geochronology and geochemistry of 830 Ma gabbro in the western segment of the Jiangnan orogen and constraint on its petrogenesis[J]. Earth Science Frontiers, 2022, 29(2): 218-233.
[24] 张春红,范蔚茗,王岳军,等. 湘西隘口新元古代基性—超基性岩墙年代学和地球化学特征:岩石成因及其构造意义[J]. 大地构造与成矿学,2009,33(2):283-293.

Zhang Chunhong, Fan Weiming, Wang Yuejun, et al. Geochronology and geochemistry of the Neoproterozoic mafic-ultramafic dykes in the Aikou area, western Hunan province: Petrogenesis and its tectonic implications[J]. Geotectonica et Metallogenia, 2009, 33(2): 283-293.
[25] Yao J L, Shu L S, Cawood P A, et al. Differentiating continental and oceanic arc systems and retro-arc basins in the Jiangnan orogenic belt, South China[J]. Geological Magazine, 2019, 156(12): 2001-2016.
[26] Yang T N, Xin D, Xue C, et al. A Late Eocene lamprophyre-carbonatite association in the SE Tibetan Plateau: Rapid basalt-induced H2O-saturated partial melting of the upper crust[J]. Geosphere, 2024, 20(1): 74-104.
[27] Zi J W, Rasmussen B, Muhling J R, et al. In situ U-Pb and geochemical evidence for ancient Pb-loss during hydrothermal alteration producing apparent young concordant zircon dates in older tuffs[J]. Geochimica et Cosmochimica Acta, 2022, 320: 324-338.
[28] 李双应,程成,彭亮,等. 论前寒武纪碎屑岩地层划分和对比:以皖南地区浅变质岩系为例[C]//中国古生物学会第十一次全国会员代表大会暨第27届学术年会论文摘要集. 东阳:中国古生物学会,2013:2.

Li Shuangying, Cheng Cheng, Peng Liang, et al. Stratigraphic division and correlation of clastic rocks in the Precambrian era: A case study of shallow metamorphic rock series in south Anhui, China[C]//Abstract Volume, the 11th National Congress of the Palaeontological Society of China (PSC) and the 27th Annual Conference of PSC. Dongyang: Palaeontological Socirty of China, 2013: 2.
[29] 谢士稳,王世进,颉颃强,等. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年[J]. 岩石学报,2014,30(10):2989-2998.

Xie Shiwen, Wang Shijin, Xie Hangqiang, et al. SHRIMP U-Pb dating of detrital zircons from the Fenzishan Group in eastern Shandong, North China Craton[J]. Acta Petrologica Sinica, 2014, 30(10): 2989-2998.
[30] 利奂章. 粤西北鹰扬关地区南华系碎屑锆石年代学和地球化学特征及构造意义[D]. 桂林:桂林理工大学,2023.

Li Huanzhang. Geochronology and geochemistry of the Nanhua System detrital zircons in the Yingyangguan region, northwestern Guangdong and their tectonic implications[D]. Guilin: Guilin University of Technology, 2023.
[31] 高海龙,冯庆来,聂小妹,等. 泰国清莱地区三叠纪南邦群碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质通报,2014,33(7):995-1007.

Gao Hailong, Feng Qinglai, Nie Xiaomei, et al. Detrital zircon LA-ICP-MS U-Pb isotopic ages of the Triassic Lampang Group in ChiangRai area, Thailand and their geological significance[J]. Geological Bulletin of China, 2014, 33(7): 995-1007.
[32] 李小兵,裴先治,李佐臣,等. 秦岭南缘勉略带构造属性及晚古生代地质背景:来自碎屑锆石U-Pb年代学的制约[J]. 岩石学报,2021,37(5):1444-1468.

Li Xiaobing, Pei Xianzhi, Li Zuochen, et al. Tectonic attributes and Late Paleozoic geological background of Mian-Lue belt in the southern margin of Qinling: Constraints from U-Pb geochronology of zircon[J]. Acta Petrologica Sinica, 2021, 37(5): 1444-1468.
[33] Zhao P, Li J J, Alexandrov I, et al. Involvement of old crustal materials during formation of the Sakhalin Island ( Russian Far East) and its paleogeographic implication: Constraints from detrital zircon ages of modern river sand and Miocene sandstone[J]. Journal of Asian Earth Sciences, 2017, 146( 15): 412-430.
[34] Ji X Z, Yang L Q, Santosh M, et al. Detrital zircon geochronology of Devonian quartzite from tectonic mélange in the Mianlue suture zone, central China: Provenance and tectonic implications[J]. International Geology Review, 2016, 58(12): 1510-1527.
[35] Moghadam H S, Li X H, Griffin W L, et al. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology[J]. Lithos, 2017, 268-271: 87-101.
[36] 李献华. 广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义[J]. 地球化学,1999,28(1):1-9.

Li Xianhua. U-Pb zircon ages of granites from northern Guangxi and their tectonic significance[J]. Geochimica, 1999, 28(1): 1-9.
[37] 王剑,曾昭光,陈文西,等. 华南新元古代裂谷系沉积超覆作用及其开启年龄新证据[J]. 沉积与特提斯地质,2006,26(4):1-7.

Wang Jian, Zeng Zhaoguang, Chen Wenxi, et al. The Neoproterozoic rift systems in southern China: New evidence for the sedimentary onlap and its initial age[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(4): 1-7.
[38] 李利阳,张传恒,贾龙龙. 江南造山带西段四堡群的沉积地质特征和构造属性探讨[J]. 地质论评,2016,62(5):1115-1124.

Li Liyang, Zhang Chuanheng, Jia Longlong. A discussion on sedimentary characteristics and structural properties of the Sibao Group in the west segment of the Jiangnan orogenic belt[J]. Geological Review, 2016, 62(5): 1115-1124.
[39] 高林志,张传恒,刘鹏举,等. 华北—江南地区中、新元古代地层格架的再认识[J]. 地球学报,2009,30(4):433-446.

Gao Linzhi, Zhang Chuanheng, Liu Pengju, et al. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China[J]. Acta Geoscientica Sinica, 2009, 30(4): 433-446.
[40] 高林志,陈峻,丁孝忠,等. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄:对武陵运动的制约[J]. 地质通报,2011,30(7):1001-1008.

Gao Linzhi, Chen Jun, Ding Xiaozhong, et al. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi Groups, northeastern Hunan: Constraints on the Wuling movement[J]. Geological Bulletin of China, 2011, 30(7): 1001-1008.
[41] 周效华,张彦杰,廖圣兵,等. 皖赣相邻地区双桥山群火山岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 高校地质学报,2012,18(4):609-622.

Zhou Xiaohua, Zhang Yanjie, Liao Shengbing, et al. LA-ICP-MS zircon U-Pb geochronology of volcanic rocks in the Shuangqiaoshan Group at Anhui-Jiangxi boundary region and its geological implication[J]. Geological Journal of China Universities, 2012, 18(4): 609-622.
[42] 韩瑶,张传恒,张恒,等. 江南造山带东段新元古代弧盆构造格局[J]. 地质论评,2016,62(2):285-299.

Han Yao, Zhang Chuanheng, Zhang Heng, et al. Configuration of Mid-Neoproterozoic arc-basin system in eastern Jiangnan orogenic belt[J]. Geological Review, 2016, 62(2): 285-299.
[43] Zhang J W, Liao M Y, Santosh M, et al. Middle Tonian calc-alkaline picrites, basalts, and basaltic andesites from the Jiangnan orogen: Evidence for rear-arc magmatism[J]. Precambrian Research, 2020, 350: 105943.
[44] 李双应,杨欣,程成,等. 论皖南地区前寒武纪浅变质岩系地层层序[J]. 地层学杂志,2014,38(1):77-94.

Li Shuangying, Yang Xin, Cheng Cheng, et al. On the stratigraphic sequences of Precambrian weak metamorphic rock series in south Anhui, China[J]. Journal of Stratigraphy, 2014, 38(1): 77-94.
[45] 安徽省地质矿产局332地质队.《祁门幅》、《屯溪幅》区域地质调查报告[R].1971. [Team Geological, Bureau of Geology and Mineral Anhui Province. Qimen, Tunxi regional geological survey report[R]. 1971.]
[46] 余心起. 皖南前南华纪浅变质地层划分与对比[J]. 地层学杂志,2013,37(4):634-635.

Yu Xinqi. Division and correlation of Precambrian weak metamorphic strata in southern Anhui[J]. Journal of Stratigraphy, 2013, 37(4): 634-635.
[47] 云南省地质调查院. 中国区域地质志:云南志[M]. 北京:地质出版社,2022.

Yunnan Geological Survey. Regional geology of China: Yunnan province[M]. Beijing: Geological Publishing House, 2022.
[48] 湖北省地质调查院. 中国区域地质志:湖北志[M]. 北京:地质出版社,2021.

Hubei Geological Survey. Regional geology of China: Hubei province[M]. Beijing: Geological Publishing House, 2021.
[49] Rubatto D, Williams I S. Imageing, trace element geochemistry and mineral inclusions: Linking U-Pb ages with metamorphic conditions[J]. EOS, 2000, 21: 25.
[50] 王敏,戴传固,陈建书,等. 贵州省梵净山区新元古代岩浆活动的年代学格架及其大地构造意义[J]. 中国地质,2016,43(3):843-856.

Wang Min, Dai Chuangu, Chen Jianshu, et al. Neoproterozoic geochronologic framework of magmatism in Fanjingshan area and its tectonic implications[J]. Geology in China, 2016, 43(3): 843-856.
[51] 范启超,张传恒,游国庆,等. 梵净山群沉积地质特征与原型盆地分析[J]. 地球学报,2017,38(4):513-522.

Fan Qichao, Zhang Chuanheng, You Guoqing, et al. Sedimentary features and basin prototype of Fanjingshan Group[J]. Acta Geoscientica Sinica, 2017, 38(4): 513-522.
[52] Zhang J W, Ye T P, Dai Y R, et al. Provenance and tectonic setting transition as recorded in the Neoproterozoic strata, western Jiangnan orogen: Implications for South China within Rodinia[J]. Geoscience Frontiers, 2019, 10(5): 1823-1839.
[53] 王孝磊,周金城,陈昕,等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报,2017,36(5):714-735.

Wang Xiaolei, Zhou Jincheng, Chen Xin, et al. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 714-735.
[54] 陈建书,代雅然,唐烽,等. 扬子地块周缘中元古代末—新元古代主要构造运动梳理与探讨[J]. 地质论评,2020,66(3):533-554.

Chen Jianshu, Dai Yaran, Tang Feng, et al. Discussion on the Mesoproterozoic and Neoproterozoic major tectonic events in marginal area of the Yangtze Block[J]. Geological Review, 2020, 66(3): 533-554.
[55] 浙江省地质矿产局. 浙江省区域地质志[M]. 北京:地质出版社, 1989.

Bureau of Geology and Mineral Zhejiang Province. Regional geology of Zhejiang province[M]. Beijing: Geological Publishing House, 1989.
[56] 安徽省地质矿产局. 安徽省区域地质志[M]. 北京:地质出版社, 1987:1-721.

Bureau of Geology and Mineral Anhui Pro-vince. Regional geology of Anhui province[M]. Beijing: Geological Publishing House, 1987: 1-721.
[57] 江西省地质矿产局. 江西省区域地质志[M]. 北京:地质出版社, 1984.

Bureau of Geology and Mineral Jiangxi Province. Regional geology of Jiangxi province[M]. Beijing: Geological Publishing House, 1984.
[58] 广西壮族自治区地质矿产局. 广西壮族自治区区域地质志[M]. 北京:地质出版社,1985:853.

Bureau of Geology and Mineral Guangxi Zhuang Autonomous Region. Regional geology of Guangxi Zhuang Autonomous Region[M]. Beijing: Geological Publishing House, 1985: 853.
[59] 湖南省地质矿产局. 湖南省区域地质志[M]. 北京:地质出版社,1988:729.

Bureau of Geology and Mineral Hunan Pro-vince. Regional geology of Hunan province[M]. Beijing: Geological Publishing House, 1988: 729.
[60] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社,1987.

Bureau of Geology and Mineral Guizhou Province. Regional geology of Guizhou province[M]. Beijing: Geological Publishing House, 1987.
[61] Yao J L, Cawood P A, Shu L S, et al. Jiangnan orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872.
[62] Lan Z W, Li X H, Zhu M Y, et al. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research, 2014, 255: 401-411.
[63] Wang X S, Gao J, Klemd R, et al. Early Neoproterozoic multiple arc-back-arc system formation during subduction-accretion processes between the Yangtze and Cathaysia Blocks: New constraints from the supra-subduction zone NE Jiangxi ophiolite (South China)[J]. Lithos, 2015, 236-237: 90-105.
[64] Zhang Y Z, Wang Y J, Zhang Y H, et al. Neoproterozoic assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and associated rocks along the central Jiangnan orogen, South China[J]. Precambrian Research, 2015, 269: 18-30.
[65] Xin Y J, Li J H, Dong S W, et al. Neoproterozoic post-collisional extension of the central Jiangnan orogen: Geochemical, geochronological, and Lu-Hf isotopic constraints from the ca. 820-800 Ma magmatic rocks[J]. Precambrian Research, 2017, 294: 91-110.
[66] Deng T, Xu D R, Chi G X, et al. Revisiting the ca. 845-820-Ma S-type granitic magmatism in the Jiangnan orogen: New insights on the Neoproterozoic tectono-magmatic evolution of South China[J]. International Geology Review, 2019, 61(4): 383-403.
[67] Xia Y, Xu X S, Niu Y L, et al. Neoproterozoic amalgamation between Yangtze and Cathaysia Blocks: The magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 2018, 309: 56-87.
[68] 贵州省地质调查院. 中国区域地质志:贵州志[M]. 北京:地质出版社,2017.

Guizhou Geological Survey. Regional geology of China: Guizhou province[M]. Beijing: Geological Publishing House, 2017.
[69] 贵州省地质局108队. 贵州省江口幅G-49-1区域地质调查报告1:20万(地质部分)[M]. 贵州省地质局108队,1970.

The108Team of Guizhou Geological Bureau. Jiangkou (G-49-1) regional geological survey report, Guizhou province 1: 200000 geological part[M]. The108 team of Guizhou Geological Bureau, 1970.
[70] 贵州108地质队. 贵州省梵净山区1/5万区域地质调查报告[R]. 北京:全国地质资料馆,1974.

The 108 Team of Guizhou Geological Bureau. Fanjingshan regional geological survey report, Guizhou province 1: 50000[R]. Beijing: National geological Data Museum, 1974.
[71] 代传固,张慧,王敏,等. 贵州省1:25万铜仁幅区域地质调查[Z]. 2011.

Dai Chuangu, Zhang Hui, Wang Min, et al. Regional geological survey of Tongren, Guizhou province 1: 250000[Z]. 2011.
[72] 代雅然. 江南造山带西段新元古代砂岩物质来源及构造背景研究[D]. 武汉:中国地质大学(武汉),2018.

Dai Yaran. Research on the provenance and structural setting of Neoproterozoic sandstones from the western Jiangnan orogen, Guizhou pro-vince[D]. Wuhan: China University of Geosciences (Wuhan), 2018.
[73] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
[74] Ludwig K R. User's manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 71.
[75] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3/4): 231-282.
[76] Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1/2): 123-138.
[77] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4): 423-439.
[78] Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation[J]. Precambrian Research, 2009, 170(1/2): 27-42.
[79] Wang L J, Griffin W L, Yu J H, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 2010, 177(1/2): 131-144.
[80] 贵州省地质调查院. 中华人民共和国梵净山幅、德旺幅、江口幅、凯德幅1:5万区域地质调查报告[R]. 2013.

Guizhou Geological Survey. Fanjingshan, Dewang, Jiangkou, Kaide regional geological survey report, the People's Republic of China 1: 50000[R]. 2013.
[81] 贵州省地质矿产局. 贵州省岩石地层[M]. 武汉:中国地质大学出版社,1997.

Bureau of Geology and Mineral Guizhou Province. Stratigraphy(lithostratic) of Guizhou province[M]. Wuhan: China University of Geosciences Press, 1997.
[82] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.
[83] Grimes C B, Wooden J L, Cheadle M J, et al. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 170(5/6): 46.
[84] Grimes C B, John B E, Kelemen P B, et al. Trace element che-mistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7): 643-646.
[85] Belousova E, Griffin W, O'reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.