[1] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[2] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
[3] 李献华,李武显,何斌. 华南陆块的形成与Rodinia超大陆聚合—裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,2012,31(6):543-559.

Li Xianhua, Li Wuxian, He Bin. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 543-559.
[4] 王孝磊,周金城,陈昕,等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报,2017,36(5):714-735.

Wang Xiaolei, Zhou Jincheng, Chen Xin, et al. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 714-735.
[5] Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186: 173-194.
[6] Cawood P A, Wang W, Zhao T Y, et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia[J]. Earth-Science Reviews, 2020, 204: 103169.
[7] 王伟,卢桂梅,黄思访,等. 扬子陆块古—中元古代地质演化与Columbia超大陆重建[J]. 矿物岩石地球化学通报,2019,38(1):30-52.

Wang Wei, Lu Guimei, Huang Sifang, et al. Geological evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and its implication on the reconstruction of the Columbia supercontinent[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(1): 30-52.
[8] Liu H C, Zi J W, Cawood P A, et al. Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents[J]. Precambrian Research, 2020, 337: 105558.
[9] 熊定一,王孝磊,邢光福. 从超大陆旋回看前寒武纪伟晶岩型锂矿的形成[J]. 华东地质,2023,44(1):1-12.

Xiong Dingyi, Wang Xiaolei, Xing Guangfu. A supercontinental cycles perspective for the formation of Precambrian pegmatitic lithium deposits[J]. East China Geology, 2023, 44(1): 1-12.
[10] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2): 163-166.
[11] Yin C Q, Lin S F, Davis D W, et al. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan orogenic belt and implications for the tectonic interpretation of South China[J]. Precambrian Research, 2013, 236: 145-156.
[12] Lin S F, Xing G F, Davis D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(6): 319-322.
[13] Xia Y, Xu X S, Niu Y L, et al. Neoproterozoic amalgamation between Yangtze and Cathaysia Blocks: The magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 2018, 309: 56-87.
[14] Yao J L, Cawood P A, Shu L S, et al. Jiangnan orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872.
[15] Wang L J, Zhang K X, Lin S F, et al. Origin and age of the Shenshan tectonic melange in the Jiangshan-Shaoxing-Pingxiang fault and late Early Paleozoic juxtaposition of the Yangtze Block and the west Cathaysia terrane, South China[J]. GSA Bulletin, 2022, 134(1/2): 113-129.
[16] Wang L J, Lin S F, Xiao W J. Yangtze and Cathaysia Blocks of South China: Their separate positions in Gondwana until Early Paleozoic juxtaposition[J]. Geology, 2023, 51(8): 723-727.
[17] 李复汉,覃嘉铭,申玉连,等. 康滇地区的前震旦系[M]. 重庆:重庆出版社,1988:1-396.

Li Fuhan, Qin Jiaming, Shen Yulian, et al. The pre-Sinian in the Kangdian area[M]. Chongqing: Chongqing Press, 1988: 1-396.
[18] 四川省地质矿产局. 四川省区域地质志[M]. 北京:地质出版社,1991:37-38.

Bureau of Geology and Mineral Resources of Sichuan Province. Regional geology of Sichuan province[M]. Beijing: Geological Publishng House, 1988: 37-38.
[19] 耿元生,旷红伟,柳永清,等. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报,2017,91(10):2151-2174.

Geng Yuansheng, Kuang Hongwei, Liu Yongqing, et al. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 2017, 91(10): 2151-2174.
[20] 李怀坤,张传林,姚春彦,等. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成[J]. 中国科学:地球科学,2013,43(8):1287-1298.

Li Huaikun, Zhang Chuanlin, Yao Chunyan, et al. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif[J]. Science China: Earth Sciences, 2013, 43(8): 1287-1298.
[21] 纪星星,周诗,陈棋,等. 滇中地区昆阳群物源及构造环境[J]. 中国地质,2016,43(3):857-878.

Ji Xingxing, Zhou Shi, Chen Qi, et al. Provenance and tectonic setting of the Kunyang Group in central Yunnan province[J]. Geology in China, 2016, 43(3): 857-878.
[22] Cui X Z, Lin S F, Wang J, et al. Latest Mesoproterozoic provenance shift in the southwestern Yangtze Block, South China: Insights into tectonic evolution in the context of the supercontinent cycle[J]. Gondwana Research, 2021, 99: 131-148.
[23] Sun L, Wang W, Lu G M, et al. Neoproterozoic geodynamics of South China and implications on the Rodinia configuration: The Kunyang Group revisited[J]. Precambrian Research, 2021, 363: 106338.
[24] 崔晓庄,江新胜,王剑,等. 川西峨边地区金口河辉绿岩脉SHRIMP锆石U-Pb年龄及其对Rodinia裂解的启示[J]. 地质通报,2012,31(7):1131-1141.

Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, et al. Zircon SHRIMP U-Pb age of Jinkouhe diabase dykes in Ebian area of western Sichuan province and its implications for the breakup of Rodinia[J]. Geological Bulletin of China, 2012, 31(7): 1131-1141.
[25] 陈风霖,谢渊,崔晓庄,等. 扬子西缘峨边群玄武岩年代学、地球化学特征及构造意义[J]. 矿物岩石,2018,38(3):76-86.

Chen Fenglin, Xie Yuan, Cui Xiaozhuang, et al. Geochronology, geochemistry and tectonic implications of basalts from the Ebian Group in the western Yangtze Block, South China[J]. Journal of Mineralogy and Petrology, 2018, 38(3): 76-86.
[26] Li K Z, Wang J, Cui X Z, et al. Early Neoproterozoic syncollisional S-type granites from the western Yangtze Block, South China: Implications for final closure of the back-arc basin[J]. Episodes, 2019, 42(2): 119-133.
[27] 熊国庆,江新胜,崔晓庄,等. 扬子西缘元古宙峨边群烂包坪组地层归属及其锆石SHRIMP U-Pb年代学证据[J]. 地学前缘,2013,20(4):350-360.

Xiong Guoqing, Jiang Xinsheng, Cui Xiaozhuang, et al. Strata location of the Lanbaoping Formation of the Proterozoic E’bian Group in the western Yangtze Block and its chronological evidence of zircon SHRIMP U-Pb age[J]. Earth Science Frontiers, 2013, 20(4): 350-360.
[28] 赵红格,刘池洋. 物源分析方法及研究进展[J]. 沉积学报,2003,21(3):409-415.

Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415.
[29] Zimmermann U, Spalletti L A. Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires province, Argentina): Implications for paleogeographic reconstructions of SW Gondwana[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 7-23.
[30] 邓奇,崔晓庄,汪正江,等. 扬子陆块北缘构造演化新认识:来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质,2023,43(1):212-225.

Deng Qi, Cui Xiaozhuang, Wang Zhengjiang, et al. New understanding of the tectonic evolution of the northern margin of Yangtze Block: Constraints from the geochronology and geochemistry of the Huashan Group[J]. Sedi- mentary Geology and Tethyan Geology, 2023, 43(1): 212-225.
[31] 宁括步,邓奇,崔晓庄,等. 扬子陆块北缘大洪山地区莲沱组底部凝灰岩锆石U-Pb定年及其地层学意义[J]. 地质通报,2024,43(2/3):363-375.[

Ning Kuobu, Deng Qi, Cui Xiaozhuang, et al. Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze Block[J]. Geological Bulletin of China, 2024, 43(2/3): 363-375.
[32] Li Z X, Wartho J A, Occhipinti S, et al. Early history of the eastern Sibao orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 2007, 159(1/2): 79-94.
[33] Wang K, Dong S W, Yao W H, et al. Nature and evolution of pre-Neoproterozoic continental crust in South China: A review and tectonic implications[J]. Acta Geologica Sinica (English Edition), 2020, 94(6): 1731-1756.
[34] Wang K, Li Z X, Dong S W, et al. Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9-2.6 Ga granitic rocks in the Zhongxiang complex[J]. Precambrian Research, 2018, 314: 325-352.
[35] Zhao T Y, Cawood P A, Wang K, et al. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block[J]. Precambrian Research, 2019, 332: 105395.
[36] Cui X Z, Wang J, Wang X C, et al. Early crustal evolution of the Yangtze Block: Constraints from zircon U-Pb-Hf isotope systematics of 3.1-1.9 Ga granitoids in the Cuoke complex, SW China[J]. Precambrian Research, 2021, 357: 106155.
[37] Hui B, Dong Y P, Cheng C, et al. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze Craton, China[J]. Precambrian Research, 2017, 301: 65-85.
[38] 吴懋德,段锦荪,宋学良,等. 云南昆阳群地质[M]. 昆明:云南科技出版社,1990:1-265.

Wu Maode, Duan Jinsun, Song Xueliang, et al. Geology of Kunyang Group in Yunnan[M]. Kunming: Yunnan Science and Technology Press, 1990: 1-265.
[39] 孙志明,尹福光,关俊雷,等. 云南东川地区昆阳群黑山组凝灰岩锆石SHRIMPU-Pb年龄及其地层学意义[J]. 地质通报,2009,28(7):896-900.

Sun Zhiming, Yin Fuguang, Guan Junlei, et al. SHRIMP U-Pb dating and its stratigraphic significance of tuff zircons from Heishan Formation of Kunyang Group, Dongchuan area, Yunnan province, China[J]. Geological Bulletin of China, 2009, 28(7): 896-900.
[40] Zhao X F, Zhou M F, Li J W, et al. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 2010, 182(1/2): 57-69.
[41] Chen W T, Zhou M F, Zhao X F. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 2013, 231: 61-77.
[42] Fan H P, Zhu W G, Li Z X, et al. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block[J]. Lithos, 2013, 168-169: 85-98.
[43] Chen F L, Cui X Z, Lin S F, et al. The 1.14 Ga mafic intrusions in the SW Yangtze Block, South China: Records of Late Mesoproterozoic intraplate magmatism[J]. Journal of Asian Earth Sciences, 2021, 205: 104603.
[44] Huang M D, Cui X Z, Lin S F, et al. The ca. 1.18-1.14 Ga A-type granites in the southwestern Yangtze Block, South China: New evidence for Late Mesoproterozoic continental rifting[J]. Precambrian Research, 2021, 363: 106358.
[45] Hu P Y, Zhai Q G, Wang J, et al. The Shimian ophiolite in the western Yangtze Block, SW China: Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications[J]. Precambrian Research, 2017, 298: 107-122.
[46] Chen W T, Sun W H, Wang W, et al. ‘‘Grenvillian” intra-plate mafic magmatism in the southwestern Yangtze Block, SW China[J]. Precambrian Research, 2014, 242: 138-153.
[47] Zhu W G, Zhong H, Li Z X, et al. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance[J]. Precambrian Research, 2016, 273: 67-89.
[48] Wang Y J, Zhu W G, Huang H Q, et al. Ca. 1.04 Ga hot Grenville granites in the western Yangtze Block, southwest China[J]. Precambrian Research, 2019, 328: 217-234.
[49] Zhu Y, Lai S C, Qin J F, et al. Petrogenesis and geochemical diversity of Late Mesoproterozoic S-type granites in the western Yangtze Block, South China: Co-entrainment of peritectic selective phases and accessory minerals[J]. Lithos, 2020, 352-353: 105326.
[50] 任光明,庞维华,潘桂棠,等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报,2017,36(11):2061-2075.

Ren Guangming, Pang Weihua, Pan Guitang, et al. Ascertainment of the Mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance[J]. Geological Bulletin of China, 2017, 36(11): 2061-2075.
[51] Hu Z C, Liu Y S, Gao S, et al. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 78: 50-57.
[52] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[53] Ludwig K R. User's manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center, 2003: 39.
[54] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194.
[55] Li X H, Li Z X, Zhou H W, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian rift of South China: Implications for the initial rifting of Rodinia[J]. Precambrian Research, 2002, 113(1/2): 135-154.
[56] Zhang J B, Ding X Z, Liu Y X, et al. The ca. 1.13-0.92 Ga magmatism in the western Yangtze Block, South China: Implications for tectonic evolution and paleogeographic reconstruction[J]. Precambrian Research, 2023, 386: 106961.
[57] Chen F L, Cui X Z, Lin S F, et al. The earliest Neoproterozoic Nb-enriched mafic magmatism indicates subduction tectonics in the southwestern Yangtze Block, South China[J]. Precambrian Research, 2023, 384: 106938.
[58] Hu J, Liu X C, Chen L Y, et al. A ~2.5 Ga magmatic event at the northern margin of the Yangtze Craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58(28/29): 3564-3579.
[59] Wu Y B, Zhou G Y, Gao S, et al. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 2014, 254: 73-86.
[60] Chen Q, Sun M, Zhao G C, et al. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites[J]. Lithos, 2019, 326-327: 1-18.
[61] Huang M D, Cui X Z, Ren G M, et al. Late Paleoproterozoic collision-related granitic magmatism in the Cuoke complex, SW China: New evidence for the early evolution of the Yangtze Block[J]. Precambrian Research, 2023, 398: 107199.
[62] Cui X Z, Ren G M, Pang W H, et al. Detrital zircon provenance of metasedimentary rocks in the Proterozoic Caiziyuan-Tongan accretionary complex: Constraints on crustal and tectonic evolution of the Yangtze Block, South China[J]. Geological Journal, 2022, 57(5): 2094-2109.
[63] 邓奇,任光明,宁括步,等. 扬子陆块西南缘河口群沉积时限和构造属性的再厘定:兼论中元古代洋板块地层[J]. 地质学报,2023,97(2):325-338.

Deng Qi, Ren Guangming, Ning Kuobu, et al. Re-definition of depositional age and tectonic attribute for the Hekou Group from southwestern Yangtze Block: A discussion on the Mesoproterozoic ocean plate stratigraphy[J]. Acta Geologica Sinica, 2023, 97(2): 325-338.
[64] Wang W, Zhou M F, Zhao X F, et al. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 2014, 309: 33-47.
[65] Zhou M F, Zhao X F, Chen W T, et al. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth-Science Reviews, 2014, 139: 59-82.
[66] 刘璎,胡浩,易凯,等. 扬子地块西缘中元古界登相营群年代学及地质意义[J]. 地质学报,2023,97(8):2476-2494.

Liu Ying, Hu Hao, Yi Kai, et al. Geochronology and tectonic significance of the Mesoproterozoic Dengxiangying Group in the western Yangtze Block[J]. Acta Geologica Sinica, 2023, 97(8): 2476-2494.
[67] 季雷. 扬子西缘凉山地区中下元古界碎屑锆石年代学及构造意义研究[D]. 北京:中国地质大学(北京),2015:1-86.

Ji Lei. Detrital zircon U-Pb geochronology and tectonic implication of the paleo- to Mesoproterzoic strata in the Liangshan district, western Yantgze Block, South China[D]. Beijing: China University of Geosciences (Beijing), 2015: 1-86.
[68] Sun L, Wang W, Pandit M K, et al. Geochemical and detrital zircon age constraints on Meso- to Neoproterozoic sedimentary basins in the southern Yangtze Block: Implications on Proterozoic geodynamics of South China and Rodinia configuration[J]. Precambrian Research, 2022, 378: 106779.
[69] Sun W H, Zhou M F, Gao J F, et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 2009, 172(1/2): 99-126.
[70] 刘星宇. 滇中昆阳群锆石U-Pb年代学研究及其大地构造意义[D]. 成都理工大学,2021:1-79.

Liu Xingyu. Zircon U-Pb geochronology of the Kunyang Group in central Yunnan and its geotectonic significance[D]. Chengdu: Chengdu University of Technology, 2021: 1-79.
[71] Chen F L, Wang J, Cui X Z, et al. A latest Mesoproterozoic arc–back-arc system in the southwestern Yangtze Block, South China: Implications for paleogeographic configuration of the Rodinia supercontinent[J]. Precambrian Research, 2024, 409: 107432.
[72] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878.
[73] Evans D A D. Meso-Neoproterozoic Rodinia supercycle[M]//Pesonen L J, Salminen J, Elming S Å, et al. Ancient supercontinents and the paleogeography of Earth. Amsterdam: Elsevier, 2021: 549-576.