[1] |
Wilson J T. Static or mobile Earth: The current scientific revolution[J]. Proceedings of the American Philosophical Society, 1968, 112(5): 309-320. |
[2] |
Celaˆl Şengör A M. Plate tectonics and orogenic research after 25 years: A tethyan perspective[J]. Earth-Science Reviews, 1990, 27(1/2): 1-201. |
[3] |
Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186: 173-194. |
[4] |
Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. |
[5] |
Ting V K. The orogenic movements in China[J]. Bulletin of the Geological Society of China, 1929, 8(2): 151-170. |
[6] |
任纪舜. 论中国南部的大地构造[J]. 地质学报,1990,64(4):275-288.
Ren Jishun. On the geotectonics of southern China[J]. Acta Geologica Sinica, 1990, 64(4): 275-288. |
[7] |
Faure M, Shu L S, Wang B, et al. Intracontinental subduction: A possible mechanism for the Early Palaeozoic orogen of SE China[J]. Terra Nova, 2009, 21(5): 360-368. |
[8] |
Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122(5/6): 772-793. |
[9] |
彭松柏,刘松峰,林木森,等. 华夏早古生代俯冲作用(Ⅱ):大爽高镁—镁质安山岩新证据[J]. 地球科学,2016,41(6):931-947.
Peng Songbai, Liu Songfeng, Lin Musen, et al. Early Paleozoic subduction in cathaysia (Ⅱ): New evidence from the Dashuang high magnesian-magnesian andesite[J]. Earth Science, 2016, 41(6): 931-947. |
[10] |
彭松柏,刘松峰,林木森,等. 华夏早古生代俯冲作用(I):来自糯垌蛇绿岩的新证据[J]. 地球科学,2016,41(5):765-778.
Peng Songbai, Liu Songfeng, Lin Musen, et al. Early Paleozoic subduction in cathaysia (I): New evidence from Nuodong ophiolite[J]. Earth Science, 2016, 41(5): 765-778. |
[11] |
覃小锋,王宗起,王涛,等. 桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约[J]. 地球学报,2015,36(3):283-292.
Qin Xiaofeng, Wang Zongqi, Wang Tao, et al. The reconfirmation of age and tectonic setting of the volcanic rocks of Yingyangguan Group in the eastern Guangxi: Constraints on the structural pattern of the southwestern segment of Qinzhou–Hangzhou joint belt[J]. Acta Geoscientica Sinica, 2015, 36(3): 283-292. |
[12] |
Zhang C L, Santosh M, Zhu Q B, et al. The Gondwana connection of South China: Evidence from monazite and zircon geochronology in the Cathaysia Block[J]. Gondwana Research, 2015, 28(3): 1137-1151. |
[13] |
Zhang C L, Zhu Q B, Chen X Y, et al. Ordovician arc-related mafic intrusions in South China: Implications for plate subduction along the southeastern margin of South China in the Early Paleozoic[J]. The Journal of Geology, 2016, 124(6): 743-767. |
[14] |
Chen Q, Zhao G C, Sun M. Protracted northward drifting of South China during the assembly of Gondwana: Constraints from the spatial-temporal provenance comparison of Neoproterozoic-Cambrian strata[J]. GSA Bulletin, 2021, 133(9/10): 1947-1963. |
[15] |
Xu Y J, Cawood P A, Du Y S, et al. Linking South China to northern Australia and India on the margin of Gondwana: Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata[J]. Tectonics, 2013, 32(6): 1547-1558. |
[16] |
Xu Y J, Liang X, Cawood P A, et al. Revisiting the paleogeographic position of South China in Gondwana by geochemistry and U-Pb ages of detrital monazite grains from Cambrian sedimentary rocks[J]. Lithos, 2022, 430-431: 106879. |
[17] |
Yao W H, Li Z X, Li W X, et al. From Rodinia to Gondwanaland: A tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 2014, 314(1): 278-313. |
[18] |
Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220. |
[19] |
Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589. |
[20] |
Sundell K E, Saylor J E. Unmixing detrital geochronology age distributions[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2872-2886. |
[21] |
Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451. |
[22] |
Vermeesch P. Dissimilarity measures in detrital geochronology[J]. Earth-Science Reviews, 2018, 178: 310-321. |
[23] |
Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980. |
[24] |
Gibson T M, Faehnrich K, Busch J F, et al. A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America[J]. Geology, 2021, 49(5): 545-550. |
[25] |
Yao J L, Cawood P A, Shu L S, et al. Jiangnan orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872. |
[26] |
Zhao G C. Jiangnan orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 2015, 27(3): 1173-1180. |
[27] |
Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302. |
[28] |
Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. |
[29] |
Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122(1/2/3/4): 85-109. |
[30] |
Wang Y J, Zhang F F, Fan W M, et al. Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics, 2010, 29(6): TC6020. |
[31] |
陈旭,戎嘉余, Rowley D B,等. 对华南早古生代板溪洋的质疑[J]. 地质论评,1995,41(5):389-400.
Chen Xu, Rong Jiayu, Rowley D B, et al. Is the Early Paleozoic Banxi ocean in South China necessary?[J]. Geological Review, 1995, 41(5): 389-400. |
[32] |
Rong J Y, Zhan R B, Xu H G, et al. Expansion of the Cathaysian oldland through the Ordovician-Silurian transition: Emerging evidence and possible dynamics[J]. Science China (Seri.D): Earth Sciences, 2010, 53(1): 1-17. |
[33] |
舒良树,陈祥云,楼法生. 华南前侏罗纪构造[J]. 地质学报,2020,94(2):333-360.
Shu Liangshu, Chen Xiangyun, Lou Fasheng. Pre-Jurassic tectonics of the South China[J]. Acta Geologica Sinica, 2020, 94(2): 333-360. |
[34] |
Xu X B, Lin S F, Tang S, et al. Transformation from Neoproterozoic sinistral to Early Paleozoic dextral shearing for the Jingdezhen ductile shear zone in the Jiangnan orogen, South China[J]. Journal of Earth Science, 2018, 29(2): 376-390. |
[35] |
Xu X B, Li Y, Tang S, et al. Neoproterozoic to Early Paleozoic polyorogenic deformation in the southeastern margin of the Yangtze Block: Constraints from structural analysis and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2015, 98: 141-151. |
[36] |
Chu Y, Lin W. Phanerozoic polyorogenic deformation in southern Jiuling massif, northern South China Block: Constraints from structural analysis and geochronology[J]. Journal of Asian Earth Sciences, 2014, 86: 117-130. |
[37] |
Li J H, Dong S W, Zhang Y Q, et al. New insights into Phanerozoic tectonics of South China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan orogen[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 3048-3080. |
[38] |
Xu Y J, Cawood P A, Du Y S. Intraplate orogenesis in response to gondwana assembly: Kwangsian orogeny, South China[J]. American Journal of Science, 2016, 316(4): 329-362. |
[39] |
Song M J, Shu L S, Santosh M, et al. Late Early Paleozoic and Early Mesozoic intracontinental orogeny in the South China Craton: Geochronological and geochemical evidence[J]. Lithos, 2015, 232: 360-374. |
[40] |
Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 2007, 12(4): 404-416. |
[41] |
Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai domains[J]. Lithos, 2011, 127(1/2): 239-260. |
[42] |
Zhang F F, Wang Y J, Zhang A M, et al. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block[J]. Lithos, 2012, 150: 188-208. |
[43] |
Dang Y, Chen M H, Mao J W, et al. Weakly fractionated I-type granitoids and their relationship to tungsten mineralization: A case study from the Early Paleozoic Shangmushui deposit, Dayaoshan area, South China[J]. Ore Geology Reviews, 2020, 117: 103281. |
[44] |
Guan Y L, Yuan C, Sun M, et al. I-type granitoids in the eastern Yangtze Block: Implications for the Early Paleozoic intracontinental orogeny in South China[J]. Lithos, 2014, 206-207: 34-51. |
[45] |
Huang X L, Yu Y, Li J, et al. Geochronology and petrogenesis of the Early Paleozoic I-type granite in the Taishan area, South China: Middle-lower crustal melting during orogenic collapse[J]. Lithos, 2013, 177: 268-284. |
[46] |
Xia Y, Xu X S, Zou H B, et al. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites[J]. Lithos, 2014, 184-187: 416-435. |
[47] |
Yu Y, Huang X L, He P L, et al. I-type granitoids associated with the Early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China[J]. Lithos, 2016, 248-251: 353-365. |
[48] |
Tang Y L, Shi Y, Hu X M, et al. Petrogenesis of Early Paleozoic I-type granitoids in the Wuyi-Yunkai orogen, South China: Implications for the tectono-magmatic evolution of the Cathaysia Block[J]. Journal of Asian Earth Sciences, 2021, 220: 104906. |
[49] |
覃小锋,王宗起,宫江华,等. 云开地块北缘加里东期中—基性火山岩的厘定:钦—杭结合带南西段早古生代古洋盆存在的证据[J]. 岩石学报,2017,33(3):791-809.
Qin Xiaofeng, Wang Zongqi, Gong Jianghua, et al. The confirmation of Caledonian intermediate-mafic volcanic rocks in northern margin of Yunkai Block: Evidence for Early Paleozoic paleo-ocean basin in southwestern segment of Qinzhou-Hangzhou joint belt[J]. Acta Petrologica Sinica, 2017, 33(3): 791-809. |
[50] |
Xin Y J, Li J H, Ratschbacher L, et al. Early Devonian (415-400 Ma) A-type granitoids and diabases in the Wuyishan, eastern Cathaysia: A signal of crustal extension coeval with the separation of South China from Gondwana[J]. GSA Bulletin, 2020, 132(11/12): 2295-2317. |
[51] |
Xu Y J, Cawood P A, Du Y S, et al. Aulacogen formation in response to opening the Ailaoshan Ocean: Origin of the Qin-Fang trough, South China[J]. The Journal of Geology, 2017, 125(5): 531-550. |
[52] |
张岳桥,徐先兵,贾东,等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘,2009,16(1):234-247.
Zhang Yueqiao, Xu Xianbing, Jia Dong, et al. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 2009, 16(1): 234-247. |
[53] |
Chu Y, Faure M, Lin W, et al. Early Mesozoic tectonics of the South China Block: Insights from the Xuefengshan intracontinental orogen[J]. Journal of Asian Earth Sciences, 2012, 61: 199-220. |
[54] |
Wang Y J, Wang Y, Zhang Y Z, et al. Triassic two-stage intra-continental orogensis of the South China Block, driven by paleotethyan closure and interactions with adjoining blocks[J]. Journal of Asian Earth Sciences, 2021, 206: 104648. |
[55] |
Xia Y, Xu X S. The epilogue of paleo-tethyan tectonics in the South China Block: Insights from the Triassic aluminous A-type granitic and bimodal magmatism[J]. Journal of Asian Earth Sciences, 2020, 190: 104129. |
[56] |
Song M J, Shu L S, Santosh M. Early Mesozoic intracontinental orogeny and stress transmission in South China: Evidence from Triassic peraluminous granites[J]. Journal of the Geological Society, 2017, 174(3): 591-607. |
[57] |
Wang Y J, Fan W M, Sun M, et al. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan province[J]. Lithos, 2007, 96(3/4): 475-502. |
[58] |
Lin W, Wang Q C, Chen K. Phanerozoic tectonics of South China Block: New insights from the polyphase deformation in the Yunkai massif[J]. Tectonics, 2008, 27(6): TC6004. |
[59] |
Yan D P, Zhou M F, Song H L, et al. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)[J]. Tectonophysics, 2003, 361(3/4): 239-254. |
[60] |
Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3/4): 269-287. |
[61] |
Li X H. Cretaceous magmatism and lithospheric extension in southeast China[J]. Journal of Asian Earth Sciences, 2000, 18(3): 293-305. |
[62] |
Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33. |
[63] |
Li J H, Ma Z L, Zhang Y Q, et al. Tectonic evolution of Cretaceous extensional basins in Zhejiang province, eastern South China: Structural and geochronological constraints[J]. International Geology Review, 2014, 56(13): 1602-1629. |
[64] |
Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136. |
[65] |
Shu L S, Yao J L, Wang B, et al. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth-Science Reviews, 2021, 216: 103596. |
[66] |
Sláma J, Košler J. Effects of sampling and mineral separation on accuracy of detrital zircon studies[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05007. |
[67] |
Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3/4): 249-270. |
[68] |
Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983. |
[69] |
Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Busby C, Azor A. Tectonics of sedimentary basins: Recent advances. Hoboken: Wiley-Blackwell, 2011: 45-62. |
[70] |
Puetz S J, Spencer C J, Ganade C E. Analyses from a validated global U-Pb detrital zircon database: Enhanced methods for filtering discordant U-Pb zircon analyses and optimizing crystallization age estimates[J]. Earth-Science Reviews, 2021, 220: 103745. |
[71] |
Compston W, Zhang Z, Cooper J A, et al. Further SHRIMP geochronology on the early Cambrian of South China[J]. American Journal of Science, 2008, 308(4): 399-420. |
[72] |
Zhu R X, Li X H, Hou X G, et al. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary[J]. Science in China (Seri. D): Earth Sciences, 2009, 52(9): 1385-1392. |
[73] |
Yang C, Li X H, Zhu M Y, et al. Geochronological constraint on the Cambrian Chengjiang biota, South China[J]. Journal of the Geological Society, 2018, 175(4): 659-666. |
[74] |
Dong M L, Dong G C, Mo X X, et al. Geochemistry, zircon U-Pb geochronology and Hf isotopes of granites in the Baoshan Block, western Yunnan: Implications for Early Paleozoic evolution along the Gondwana margin[J]. Lithos, 2013, 179: 36-47. |
[75] |
Hu P Y, Li C, Wang M, et al. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an Early Paleozoic Andean-type magmatic arc along the Gondwana proto-tethyan margin[J]. Journal of Asian Earth Sciences, 2013, 77: 91-107. |
[76] |
Hu P Y, Zhai Q G, Wang J, et al. Ediacaran magmatism in the north Lhasa terrane, Tibet and its tectonic implications[J]. Precambrian Research, 2018, 307: 137-154. |
[77] |
Horton B K, Hassanzadeh J, Stockli D F, et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics[J]. Tectonophysics, 2008, 451(1/2/3/4): 97-122. |
[78] |
Moghadam H S, Li X H, Griffin W L, et al. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology[J]. Lithos, 2017, 268-271: 87-101. |
[79] |
Moghadam H S, Li X H, Santos J F, et al. Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran[J]. Earth and Planetary Science Letters, 2017, 474: 83-96. |
[80] |
刘宝珺,许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京:科学出版社,1994.
Liu Baojun, Xu Xiaosong. Atlas of lithofacies and paleogeography of South China (Sinian-Triassic)[M]. Beijing: Science Press, 1994. |
[81] |
Hu J, Liu X C, Chen L Y, et al. A ~2.5 Ga magmatic event at the northern margin of the Yangtze Craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58(28/29): 3564-3579. |
[82] |
Chen Q, Sun M, Zhao G C, et al. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites[J]. Lithos, 2019, 326-327: 1-18. |
[83] |
Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U–Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200-203: 26-37. |
[84] |
李怀坤,张传林,相振群,等. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义[J]. 岩石学报,2013,29(2):673-697.
Li Huaikun, Zhang Chuanlin, Xiang Zhenqun, et al. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance[J]. Acta Petrologica Sinica, 2013, 29(2): 673-697. |
[85] |
李怀坤,田辉,周红英,等. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比:锆石SHRIMP U-Pb年龄及Hf同位素证据[J]. 地学前缘,2016,23(6):186-201.
Li Huaikun, Tian Hui, Zhou Hongying, et al. Correlation between the Dagushi Group in the Dahongshan area and the Shennongjia Group in the Shennongjia area on the northern margin of the Yangtze Craton: Constraints from zircon U-Pb ages and Lu-Hf isotopic systematics[J]. Earth Science Frontiers, 2016, 23(6): 186-201. |
[86] |
Shu L S, Jahn B M, Charvet J, et al. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 2014, 314(1): 154-186. |
[87] |
Xue E K, Wang W, Zhou M F, et al. Late Neoproterozoic–Early Paleozoic basin evolution in the Cathaysia Block, South China: Implications of spatio-temporal provenance changes on the paleogeographic reconstructions in supercontinent cycles[J]. GSA Bulletin, 2020, 133(3/4): 717-739. |
[88] |
Grew E S, Carson C J, Christy A G, et al. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, east Antarctica[J]. Precambrian Research, 2012, 206-207: 87-108. |
[89] |
Halpin J A, Daczko N R, Clarke G L, et al. Basin analysis in polymetamorphic terranes: An example from east Antarctica[J]. Precambrian Research, 2013, 231: 78-97. |
[90] |
Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. |
[91] |
Mulder J A, Cawood P A. Evaluating preservation bias in the continental growth record against the monazite archive[J]. Geology, 2022, 50(2): 243-247. |
[92] |
Guo R H, Hu X M, Garzanti E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082. |
[93] |
Morrissey L J, Hand M, Kelsey D E. Multi-stage metamorphism in the Rayner-eastern Ghats terrane: P-T-t constraints from the northern Prince Charles Mountains, east Antarctica[J]. Precambrian Research, 2015, 267: 137-163. |
[94] |
Morrissey L J, Hand M, Kelsey D E, et al. Cambrian high-temperature reworking of the Rayner-eastern Ghats terrane: Constraints from the northern Prince Charles Mountains region, east Antarctica[J]. Journal of Petrology, 2016, 57(1): 53-92. |
[95] |
Bose S, Ghosh G, Kawaguchi K, et al. Zircon and monazite geochronology from the Rengali-eastern Ghats province: Implications for the tectonic evolution of the eastern Indian terrane[J]. Precambrian Research, 2021, 355: 106080. |
[96] |
Ganguly P, Das K, Bose S, et al. U-Pb zircon and U-Th-total Pb monazite ages from the Phulbani domain of the eastern Ghats Belt, India: Time constraints on high-grade metamorphism and magmatism in the lower crust[J]. Precambrian Research, 2018, 316: 1-23. |
[97] |
Korhonen F J, Clark C, Brown M, et al. How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the eastern Ghats orogenic belt, India[J]. Precambrian Research, 2013, 234: 322-350. |
[98] |
Li L M, Lin S F, Xing G F, et al. First direct evidence of Pan-African orogeny associated with Gondwana assembly in the Cathaysia Block of southern China[J]. Scientific Reports, 2017, 7: 794. |
[99] |
Lin S F, Xing G F, Davis D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(4): 319-322. |
[100] |
Lin S F, Wang L J, Xiao W J, et al. The Early Paleozoic Wuyi–Yunkai orogeny in South China: A collisional orogeny with a major lag in time between onset of collision and peak metamorphism in subducted continental crust[J]. Geological Society, London, Special Publications, 2023, 542(1): SP542-2023-2026. |
[101] |
Xu Y J, Du Y S, Cawood P A, et al. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267-268: 63-72. |
[102] |
Yu W C, Du Y S, Cawood P A, et al. Detrital zircon evidence for the reactivation of an Early Paleozoic syn-orogenic basin along the north Gondwana margin in South China[J]. Gondwana Research, 2015, 28(2): 769-780. |
[103] |
李三忠,李玺瑶,赵淑娟,等. 全球早古生代造山带(Ⅲ):华南陆内造山[J]. 吉林大学学报(地球科学版),2016,46(4):1005-1025.
Li Sanzhong, Li Xiyao, Zhao Shujuan, et al. Global Early Paleozoic orogens (Ⅲ): Intracontinental orogen in South China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1005-1025. |
[104] |
陈旭,樊隽轩,陈清,等. 论广西运动的阶段性[J]. 中国科学:地球科学,2014,44(5):842-850.
Chen Xu, Fan Juanxuan, Chen Qing, et al. Toward a stepwise Kwangsian orogeny[J]. Science China: Earth Sciences, 2014, 44(5): 842-850. |
[105] |
陈旭,张元动,樊隽轩,等. 广西运动的进程:来自生物相和岩相带的证据[J]. 中国科学:地球科学,2012,42(11):1617-1626.
Chen Xu, Zhang Yuandong, Fan Juanxuan, et al. Onset of the Kwangsian orogeny as evidenced by biofacies and lithofacies[J]. Science China: Earth Sciences, 2012, 42(11): 1617-1626. |
[106] |
张国伟,郭安林,王岳军,等. 中国华南大陆构造与问题[J]. 中国科学:地球科学,2013,43(10):1553-1582.
Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 2013, 43(10): 1553-1582. |
[107] |
Yao W H, Li Z X. Tectonostratigraphic history of the Ediacaran-Silurian Nanhua Foreland Basin in South China[J]. Tectonophysics, 2016, 674: 31-51. |
[108] |
Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere?[J]. Geology, 2013, 41(8): 903-906. |
[109] |
Jiang G Q, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920. |
[110] |
Wang W, Cawood P A, Pandit M K, et al. Fragmentation of South China from greater India during the Rodinia-Gondwana transition[J]. Geology, 2021, 49(2): 228-232. |
[111] |
Xu Y J, Cawood P A, Du Y S, et al. Terminal suturing of Gondwana along the southern margin of South China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island[J]. Tectonics, 2014, 33(12): 2490-2504. |
[112] |
Yu J H, O’Reilly S Y, Wang L J, et al. Where was South China in the Rodinia supercontinent?[J]. Precambrian Research, 2008, 164(1/2): 1-15. |
[113] |
Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U–Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 28(4/5/6): 385-408. |
[114] |
Roberts E A, Houseman G A. Geodynamics of central Australia during the intraplate Alice Springs orogeny: Thin viscous sheet models[J]. Geological Society, London, Special Publications, 2001, 184(1): 139-164. |
[115] |
Raimondo T, Hand M, Collins W J. Compressional intracontinental orogens: Ancient and modern perspectives[J]. Earth-Science Reviews, 2014, 130: 128-153. |
[116] |
Neil E A, Houseman G A. Geodynamics of the Tarim Basin and the Tian Shan in Central Asia[J]. Tectonics, 1997, 16(4): 571-584. |
[117] |
Wang L J, Zhang K X, Lin S F, et al. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late Early Paleozoic juxtaposition of the Yangtze Block and the West Cathaysia terrane, South China[J]. GSA Bulletin, 2021, 134(1/2): 113-129. |
[118] |
Holdsworth R E, Stewart M, Imber J, et al. The structure and rheological evolution of reactivated continental fault zones: A review and case study[J]. Geological Society, London, Special Publications, 2001, 184(1): 115-137. |
[119] |
Tikoff B, Teyssier C. Strain modeling of displacement-field partitioning in transpressional orogens[J]. Journal of Structural Geology, 1994, 16(11): 1575-1588. |
[120] |
Sun H S, Li J H, Zhang Y Q, et al. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China[J]. Journal of Structural Geology, 2018, 110: 116-130. |
[121] |
Li J H, Zhang Y Q, Zhao G C, et al. New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia[J]. Tectonics, 2017, 36(5): 819-853. |
[122] |
舒良树,卢华复,贾东,等. 华南武夷山早古生代构造事件的40Ar/39Ar同位素年龄研究[J]. 南京大学学报(自然科学版),1999,35(6):26-32.
Shu Liangshu, Lu Huafu, Jia Dong, et al. Study of the 40Ar/39Ar isotopic age for the Early Paleozoic tectonothermal event in the Wuyishan region, South China[J]. Journal of Nanjing University (Natural Sciences), 1999, 35(6): 26-32. |
[123] |
Shu L S, Faure M, Wang B, et al. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia[J]. Comptes Rendus Geoscience, 2008, 340(2/3): 151-165. |
[124] |
Shu L S, Wang B, Cawood P A, et al. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China[J]. Tectonics, 2015, 34(8): 1600-1621. |
[125] |
Charvet J, Shu L S, Faure M, et al. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 2010, 39(4): 309-330. |
[126] |
Aitken A R A. Did the growth of Tibetan topography control the locus and evolution of Tien Shan mountain building?[J]. Geology, 2011, 39(5): 459-462. |
[127] |
Zhang H C, Xu Y J, Cawood P A, et al. Linking the Paleozoic evolution of Hainan Island to Indochina and Australia: Implication for the paleogeography of the eastern tethys ocean[J]. Tectonophysics, 2023, 858: 229882. |
[128] |
王岳军,卢向红,钱鑫,等. 滇西—东南亚原特提斯南支的造山作用[J]. 中国科学:地球科学,2022,52(11):2077-2104.
Wang Yuejun, Lu Xianghong, Qian Xin. Prototethyan orogenesis in southwest Yunnan and Southeast Asia[J]. Science China : Earth Sciences, 2022, 52(11): 2077-2104. |
[129] |
Wang Y J, Zhang Y Z, Qian X, et al. Early Paleozoic accretionary orogenesis in the northeastern Indochina and implications for the paleogeography of East Gondwana: Constraints from igneous and sedimentary rocks[J]. Lithos, 2021, 382-383: 105921. |
[130] |
Zhang H C, Xu Y J, Cawood P A, et al. Ordovician amphibolite-facies metamorphism in Hainan Island: A record of Early Paleozoic accretionary orogenesis along the northern margin of East Gondwana?[J]. Journal of Asian Earth Sciences, 2022, 229: 105161. |
[131] |
Roger F, Maluski H, Leyreloup A, et al. U-Pb dating of high temperature metamorphic episodes in the Kon Tum massif (Vietnam)[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 565-572. |
[132] |
Faure M, Chen Y, Feng Z H, et al. Tectonics and geodynamics of South China: An introductory note[J]. Journal of Asian Earth Sciences, 2017, 141: 1-6. |