[1] |
Macdonald F A, Schmitz M D, Crowley J L, et al. Calibrating the Cryogenian[J]. Science, 2010, 327(5970): 1241-1243. |
[2] |
Lan Z W, Li X H, Zhu M Y, et al. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research, 2014, 255: 401-411. |
[3] |
Rooney A D, Strauss J V, Brandon A D, et al. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations[J]. Geology, 2015, 43(5): 459-462. |
[4] |
Kirschvink J L. Late Proterozoic low-latitude global glaciation: The Snowball Earth[M]//Schopf J W, Klein C. The Proterozoic biosphere: A multidisciplinary study. New York: Cambridge University Press, 1992: 51-52. |
[5] |
Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic Snowball Earth[J]. Science, 1998, 281(5381): 1342-1346. |
[6] |
Hoffman P F, Schrag D P. The Snowball Earth hypothesis: Testing the limits of global change[J]. Terra Nova, 2002, 14(3): 129-155. |
[7] |
Olcott A N, Sessions A L, Corsetti F A, et al. Biomarker evidence for photosynthesis during Neoproterozoic glaciation[J]. Science, 2005, 310(5747): 471-474. |
[8] |
Wang P, Du Y S, Yu W C, et al. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews, 2020, 201: 103032. |
[9] |
Song H Y, An Z H, Ye Q, et al. Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation[J]. Nature Communications, 2023, 14(1): 1564. |
[10] |
Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic ‘Snowball Earth’ simulations with a coupled climate/ice-sheet model[J]. Nature, 2000, 405(6785): 425-429. |
[11] |
Micheels A, Montenari M. A Snowball Earth versus a slushball Earth: Results from Neoproterozoic climate modeling sensitivity experiments[J]. Geosphere, 2008, 4(2): 401-410. |
[12] |
Lang X G, Chen J T, Cui H, et al. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China[J]. Precambrian Research, 2018, 310: 243-255. |
[13] |
沈洪娟,顾尚义,赵思凡,等. 华南南华纪南沱冰期海洋环境的沉积地球化学记录:来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据[J]. 地质论评,2020,66(1):214-228.
Shen Hongjuan, Gu Shangyi, Zhao Sifan, et al. The sedimentary geochemical records of ocean environment during the Nantuo (Marinoan) glaciation in South China:Carbon and oxygen isotopes and trace element compositions of dolostone in Nantuo Formation, Nanhuan System, in eastern Guizhou[J]. Geological Review, 2020, 66(1): 214-228. |
[14] |
Johnson B W, Poulton S W, Goldblatt C. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth[J]. Nature Communications, 2017, 8(1): 1316. |
[15] |
Love G D, Grosjean E, Stalvies C, et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period[J]. Nature, 2009, 457(7230): 718-721. |
[16] |
Ye Q, Tong J N, Xiao S H, et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic Snowball Earth[J]. Geology, 2015, 43(6): 507-510. |
[17] |
Cox G M, Halverson G P, Stevenson R K, et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters, 2016, 446: 89-99. |
[18] |
Ward J F, Verdel C, Campbell M J, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: Constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471. |
[19] |
Dalziel I W D. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent[J]. Geology, 1991, 19(6): 598-601. |
[20] |
Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out?[J]. Science, 1991, 252(5011): 1409-1412. |
[21] |
Moores E M. Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis[J]. Geology, 1991, 19(5): 425-428. |
[22] |
Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(1/2): 117-128. |
[23] |
Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. |
[24] |
杜远生,周琦,余文超,等. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用[J]. 地质科技情报,2015,34(6):1-7.
Du Yuansheng, Zhou Qi, Yu Wenchao, et al. Linking the Cryogenian manganese metallogenic process in the southeast margin of Yangtze Block to break-up of Rodinia supercontinent and Sturtian Glaciation[J]. Geological Science and Technology Information, 2015, 34(6): 1-7. |
[25] |
周琦,杜远生,袁良军,等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学,2016,41(2):177-188.
Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua period in Guizhou-Hunan-Chongqing border area, South China[J]. Earth Science, 2016, 41(2): 177-188. |
[26] |
Hoffman P F, Abbot D S, Ashkenazy Y, et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11): e1600983. |
[27] |
Lan Z W, Huyskens M H, Lu K, et al. Toward refining the onset age of Sturtian Glaciation in South China[J]. Precambrian Research, 2020, 338: 105555. |
[28] |
Lan Z W, Li X H, Zhang Q R, et al. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China[J]. Precambrian Research, 2015, 267: 28-38. |
[29] |
Balgord E A, Yonkee W A, Link P K, et al. Stratigraphic, geochronologic, and geochemical record of the Cryogenian Perry Canyon Formation, northern Utah: Implications for Rodinia rifting and Snowball Earth glaciation[J]. GSA Bulletin, 2013, 125(9/10): 1442-1467. |
[30] |
Yu W C, Algeo T J, Du Y S, et al. Newly discovered Sturtian cap carbonate in the Nanhua Basin, South China[J]. Precambrian Research, 2017, 293: 112-130. |
[31] |
Zhou C M, Tucker R, Xiao S H, et al. New constraints on the ages of Neoproterozoic glaciations in South China[J]. Geology, 2004, 32(5): 437-440. |
[32] |
Zhou C M, Huyskens M H, Lang X G, et al. Calibrating the terminations of Cryogenian global glaciations[J]. Geology, 2019, 47(3): 251-254. |
[33] |
Rooney A D, Yang C, Condon D J, et al. U-Pb and Re-Os geochronology tracks stratigraphic condensation in the Sturtian Snowball Earth aftermath[J]. Geology, 2020, 48(6): 625-629. |
[34] |
高永娟,张予杰,安显银,等. 扬子东南缘两界河组碎屑锆石U-Pb年龄及其对Sturtian冰川作用的启示[J]. 地球科学,2020,45(8):3070-3081.
Gao Yongjuan, Zhang Yujie, An Xianyin, et al. Detrital zircon U-Pb ages of Liangjiehe Formation in east Guizhou province and its implications for Sturtian Glaciation[J]. Earth Science, 2020, 45(8): 3070-3081. |
[35] |
郑杰,阳正熙,刘石磊,等. 黔东北地区南华系两界河组CIA指数特征及意义[J]. 沉积与特提斯地质,2019,39(1):50-59.
Zheng Jie, Yang Zhengxi, Liu Shilei, et al. The chemical alteration indexes and their significance for the Nanhuan Liangjiehe Formation in northeastern Guizhou[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(1): 50-59. |
[36] |
Wang P, Algeo T J, Zhou Q, et al. Large accumulations of 34S-enriched pyrite in a low-sulfate marine basin: The Sturtian Nanhua Basin, South China[J]. Precambrian Research, 2019, 335: 105504. |
[37] |
Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304. |
[38] |
Swart P K, Oehlert A M. Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis[J]. Sedimentary Geology, 2018, 364: 14-23. |
[39] |
Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49. |
[40] |
Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 37-57. |
[41] |
Yoshioka H, Asahara Y, Tojo B, et al. Systematic variations in C, O, and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: Implications for a glacial to interglacial transition[J]. Precambrian Research, 2003, 124(1): 69-85. |
[42] |
Oehlert A M, Swart P K. Interpreting carbonate and organic carbon isotope covariance in the sedimentary record[J]. Nature Communications, 2014, 5(1): 4672. |
[43] |
Johnston D T, Macdonald F A, Gill B C, et al. Uncovering the Neoproterozoic carbon cycle[J]. Nature, 2012, 483(7389): 320-323. |
[44] |
Kump L R. Interpreting carbon-isotope excursions: Strangelove oceans[J]. Geology, 1991, 19(4): 299-302. |
[45] |
Rieu R, Allen P A, Plötze M, et al. Climatic cycles during a Neoproterozoic “Snowball” glacial epoch[J]. Geology, 2007, 35(4): 299-302. |
[46] |
Corsetti F A, Olcott A N, Bakermans C. The biotic response to Neoproterozoic Snowball Earth[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 114-130. |
[47] |
李美俊,王铁冠. 扬子区新元古代“雪球”时期古环境的分子地球化学证据[J]. 地质学报,2007,81(2):220-229.
Li Meijun, Wang Tieguan. Molecular geochemical evidence for the paleoenvironment of the Late Neoproterozoic “Snowball Earth” age in the Yangtze region[J]. Acta Geologica Sinica, 2007, 81(2): 220-229. |
[48] |
Wang T G, Li M J, Wang C J, et al. Organic molecular evidence in the Late Neoproterozoic tillites for a palaeo-oceanic environment during the Snowball Earth era in the Yangtze region, southern China[J]. Precambrian Research, 2008, 162(3/4): 317-326. |
[49] |
Riedman L A, Porter S M, Halverson G P, et al. Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard[J]. Geology, 2014, 42(11): 1011-1014. |
[50] |
McKirdy D M, Burgess J M, Lemon N M, et al. A chemostratigraphic overview of the Late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia[J]. Precambrian Research, 2001, 106(1/2): 149-186. |
[51] |
Ma H R, Shen B, Lang X G, et al. Active biogeochemical cycles during the Marinoan global glaciation[J]. Geochimica et Cosmochimica Acta, 2022, 321: 155-169. |
[52] |
Hurtgen M T, Arthur M A, Suits N S, et al. The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a Snowball Earth?[J]. Earth and Planetary Science Letters, 2002, 203(1): 413-429. |
[53] |
裴浩翔,李延河,付勇,等. 贵州铜仁高地“大塘坡式”锰矿的成矿机制:硫,碳同位素制约[J]. 地球学报,2020,41(5):651-662.
Pei Haoxiang, Li Yanhe, Fu Yong, et al. Metallogenic mechanism of “Datangpo type” manganese deposits in Gaodi, Guizhou province: Constrains from sulfur and carbon isotopes[J]. Acta Geoscientica Sinica, 2020, 41(5): 651-662. |
[54] |
满玲,祝圣贤,邓宾,等. 斯图特雪球地球存在持续的海洋碳循环[J]. 沉积学报,2024,42(1):29-38.
Man Ling, Zhu Shengxian, Deng Bin, et al. Active marine carbon cycle during Sturtian “Snowball Earth” glaciation[J]. Acta Sedimentologica Sinica, 2024, 42(1): 29-38. |
[55] |
Hood A V S, Penman D E, Lechte M A, et al. Neoproterozoic syn-glacial carbonate precipitation and implications for a snowball Earth[J]. Geobiology, 2022, 20(2): 175-193. |
[56] |
Halverson G P, Maloof A C, Hoffman P F. The Marinoan glaciation (Neoproterozoic) in northeast Svalbard[J]. Basin Research, 2004, 16(3): 297-324. |
[57] |
Hoffman P F, Halverson G P, Schrag D P, et al. Snowballs in Africa: Sectioning a long-lived Neoproterozoic carbonate platform and its bathyal foreslope (NW Namibia)[J]. Earth-Science Reviews, 2021, 219: 103616. |
[58] |
Swanson-Hysell N L, Rose C V, Calmet C C, et al. Cryogenian glaciation and the onset of carbon-isotope decoupling[J]. Science, 2010, 328(5978): 608-611. |