[1] 朱文斌,葛荣峰,舒良树,等. 塔里木克拉通北缘前寒武纪构造岩浆事件与地壳演化[M]. 北京:科学出版社,2017:1-437.

Zhu Wenbin, Ge Rongfeng, Shu Liangshu, et al. Precambrian tectono- magmatic events and crust evolutionin the northern Tarim Craton[M]. Beijing: Science Press, 2017: 1-437.
[2] Nance R D, Murphy J B, Santosh M. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29.
[3] Murphy J B, Nance R D. Speculations on the mechanisms for the formation and breakup of supercontinents[J]. Geoscience Frontiers, 2013, 4(2): 185-194.
[4] Young G M. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history[J]. Geoscience Frontiers, 2013, 4(3): 247-261.
[5] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
[6] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
[7] 李献华,李武显,何斌. 华南陆块的形成与Rodinia超大陆聚合—裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,2012,31(6):543-559.

Li Xianhua, Li Wuxian, He Bin. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 543-559.
[8] Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186: 173-194.
[9] Cawood P A, Wang W, Zhao T Y, et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia[J]. Earth-Science Reviews, 2020, 204: 103169.
[10] 王伟,卢桂梅,黄思访,等. 扬子陆块古—中元古代地质演化与Columbia超大陆重建[J]. 矿物岩石地球化学通报,2019,38(1):30-52.

Wang Wei, Lu Guimei, Huang Sifang, et al. Geological evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and its implication on the reconstruction of the Columbia supercontinent[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(1): 30-52.
[11] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian Blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286.
[12] Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222-223: 13-54.
[13] 舒良树,陈祥云,楼法生. 华南前侏罗纪构造[J]. 地质学报,2020,94(2):333-360.

Shu Liangshu, Chen Xiangyun, Lou Fasheng. Pre-Jurassic tectonics of the South China[J]. Acta Geologica Sinica, 2020, 94(2): 333-360.
[14] 胡瑞忠,毛景文,范蔚茗,等. 华南陆块陆内成矿作用的一些科学问题[J]. 地学前缘,2010,17(2):13-26.

Hu Ruizhong, Mao Jingwen, Fan Weiming, et al. Some scientific questions on the intra-continental metallogeny in the South China continent[J]. Earth Science Frontiers, 2010, 17(2): 13-26.
[15] 汪泽成,刘静江,姜华,等. 中—上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义[J]. 石油勘探与开发,2019,46(1):39-51.

Wang Zecheng, Liu Jingjiang, Jiang Hua, et al. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the Middle-Upper Yangtze region, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 39-51.
[16] 张国伟,郭安林,王岳军,等. 中国华南大陆构造与问题[J]. 中国科学:地球科学,2013,43(10):1553-1582.

Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China con-tinent and its implications[J]. Science China: Earth Sciences, 2013, 43(10): 1553-1582.
[17] Zhou M F, Zhao X F, Chen W T, et al. Proterozoic Fe–Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth-Science Reviews, 2014, 139: 59-82.
[18] Zhao G C. Jiangnan orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 2015, 27(3): 1173-1180.
[19] Wang K, Dong S W, Yao W H, et al. Nature and evolution of pre-Neoproterozoic continental crust in South China: A review and tectonic implications[J]. Acta Geologica Sinica (English Edition), 2020, 94(6): 1731-1756.
[20] 田洋,王伟,金巍,等. 大别贾庙新太古代花岗质岩石:对扬子克拉通形成与演化的制约[J]. 中国科学:地球科学,2022,52(11):2219-2238.

Tian Yang, Wang Wei, Jin Wei, et al. Neoarchean granitic rocks from the Jiamiao area of the Dabie orogen: Implications on the formation and early evolution of the Yangtze Craton[J]. Science China: Earth Sciences, 2022, 52(11): 2219-2238.
[21] Wang K, Li Z X, Dong S W, et al. Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9–2.6Ga granitic rocks in the Zhongxiang complex[J]. Precambrian Research, 2018, 314: 325-352.
[22] Zhao T Y, Cawood P A, Wang K, et al. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block[J]. Precambrian Research, 2019, 332: 105395.
[23] Cui X Z, Wang J, Wang X C, et al. Early crustal evolution of the Yangtze Block: Constraints from zircon U-Pb-Hf isotope systematics of 3.1–1.9 Ga granitoids in the Cuoke complex, SW China[J]. Precambrian Research, 2021, 357: 106155.
[24] Hui B, Dong Y P, Cheng C, et al. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze Craton, China[J]. Precambrian Research, 2017, 301: 65-85.
[25] Nam T N, Toriumi M, Sano Y, et al. 2.9, 2.36, and 1.96 Ga zircons in orthogneiss south of the Red River shear zone in Viet Nam: Evidence from SHRIMP U-Pb dating and tectonothermal implications[J]. Journal of Asian Earth Sciences, 2003, 21(7): 743-753.
[26] Cui X Z, Wang J, Sun Z M, et al. Early Paleoproterozoic (ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: Implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 2019, 169: 308-322.
[27] Cui X Z, Wang J, Ren G M, et al. Paleoproterozoic tectonic evolution of the Yangtze Block: New evidence from ca. 2.36 to 2.22 Ga magmatism and 1.96 Ga metamorphism in the Cuoke complex, SW China[J]. Precambrian Research, 2020, 337: 105525.
[28] Zhao X F, Zhou M F, Li J W, et al. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 2010, 182(1/2): 57-69.
[29] Wang L J, Yu J H, Griffin W L, et al. Early crustal evolution in the western Yangtze Block: Evidence from U–Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 2012, 222-223: 368-385.
[30] 李怀坤,张传林,姚春彦,等. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成[J]. 中国科学:地球科学,2013,43(8):1287-1298.

Li Huaikun, Zhang Chuanlin, Yao Chunyan, et al. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif[J]. Science China: Earth Sciences, 2013, 43(8): 1287-1298.
[31] Zhao T Y, Cawood P A, Zi J W, et al. Early Paleoproterozoic magmatism in the Yangtze Block: Evidence from zircon U-Pb ages, Sr-Nd-Hf isotopes and geochemistry of ca. 2.3 Ga and 2.1 Ga granitic rocks in the Phan Si Pan complex, north Vietnam[J]. Precambrian Research, 2019, 324: 253-268.
[32] Lu G M, Wang W, Ernst R E, et al. Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China: Implications for tectonic evolution and paleogeographic reconstruction[J]. Precambrian Research, 2019, 322: 66-84.
[33] Wang W, Cawood P A, Zhou M F, et al. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent[J]. Earth and Planetary Science Letters, 2016, 433: 269-279.
[34] Wu Y B, Zhou G Y, Gao S, et al. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 2014, 254: 73-86.
[35] Wang W, Zhou M F. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia[J]. Tectonophysics, 2014, 610: 110-127.
[36] 耿元生,旷红伟,柳永清,等. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报,2017,91(10):2151-2174.

Geng Yuansheng, Kuang Hongwei, Liu Yongqing, et al. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 2017, 91(10): 2151-2174.
[37] Wang W, Zhou M F, Zhao X F, et al. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 2014, 309: 33-47.
[38] 孙志明,尹福光,关俊雷,等. 云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J]. 地质通报,2009,28(7):896-900.

Sun Zhiming, Yin Fuguang, Guan Junlei, et al. SHRIMP U-Pb dating and its stratigraphic significance of tuff zircons from Heishan Formation of Kunyang Group, Dongchuan area, Yunnan province, China[J]. Geological Bulletin of China, 2009, 28(7): 896-900.
[39] 尹福光,孙志明,张璋. 会理—东川地区中元古代地层—构造格架[J]. 地质论评,2011,57(6):770-778.[

Yin Fuguang, Sun Zhiming, Zhang Zhang, et al. Mesoproterozoic stratigraphic-structure framework in Huili-Dongchuan area[J]. Geological Review, 2011, 57(6): 770-778.
[40] Lu G M, Wang W, Cawood P A, et al. Late Paleoproterozoic to Early Mesoproterozoic mafic magmatism in the SW Yangtze Block: Mantle plumes associated with Nuna breakup?[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7): e2019JB019260.
[41] Greentree M R, Li Z X. The oldest known rocks in south-western China: SHRIMP U–Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 2008, 33(5/6): 289-302.
[42] Zhao X F, Zhou M F. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-coppe-gold) metallogenic province[J]. Mineralium Deposita, 2011, 46(7): 731-747.
[43] 王冬兵,孙志明,尹福光,等. 扬子地块西缘河口群的时代:来自火山岩锆石LA-ICP-MS U-Pb年龄的证据[J]. 地层学杂志,2012,36(3):630-635.

Wang Dongbing, Sun Zhiming, Yin Fuguang, et al. Geochronology of the Hekou Group on the western margin of the Yangtze Block: Evidence from zircon LA-ICP-MS U-Pb dating of volcanic rocks[J]. Journal of Stratigraphy, 2012, 36(3): 630-635.
[44] 关俊雷,郑来林,刘建辉,等. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义[J]. 地质学报,2011,85(4):482-490.

Guan Junlei, Zheng Lailin, Liu Jianhui, et al. Zircons SHRIMP U-Pb dating of diabase from Hekou, Sichuan province, China and its geological significance[J]. Acta Geologica Sinica, 2011, 85(4): 482-490.
[45] 周家云,毛景文,刘飞燕,等. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征[J]. 矿物岩石,2011,31(3):66-73.

Zhou Jiayun, Mao Jingwen, Liu Feiyan, et al. Shrimp U-Pb zircon chronology and geochemistry of albitite from the Hekou Group in the western Yangtze Block[J]. Journal of Mineralogy and Petrology, 2011, 31(3): 66-73.
[46] Chen W T, Zhou M F, Zhao X F. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 2013, 231: 61-77.
[47] 邓奇,任光明,宁括步,等. 扬子陆块西南缘河口群沉积时限和构造属性的再厘定:兼论中元古代洋板块地层[J]. 地质学报,2023,97(2):325-338.

Deng Qi, Ren Guangming, Ning Kuobu, et al. Re-definition of depositional age and tectonic attribute for the Hekou Group from southwestern Yangtze Block: A discussion on the Mesoproterozoic ocean plate stratigraphy[J]. Acta Geologica Sinica, 2023, 97(2): 325-338.
[48] 任光明,庞维华,潘桂棠,等. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义[J]. 地质通报,2017,36(11):2061-2075.

Ren Guangming, Pang Weihua, Pan Guitang, et al. Ascertainment of the Mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance[J]. Geological Bulletin of China, 2017, 36(11): 2061-2175.
[49] Cui X Z, Ren G M, Pang W H, et al. Detrital zircon provenance of metasedimentary rocks in the Proterozoic Caiziyuan-Tongan accretionary complex: Constraints on crustal and tectonic evolution of the Yangtze Block, South China[J]. Geological Journal, 2022, 57(5): 2094-2109.
[50] Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U–Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200-203: 26-37.
[51] 邓奇,汪正江,王剑,等. 扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约[J]. 地质学报,2017,91(7):1454-1466.

Deng Qi, Wang Zhengjiang, Wang Jian, et al. Discovery of the Baiyu ~1.79 Ga a-type granite in the Beiba area of the northwestern margin of Yangtze Block: Constraints on tectonic evolution of South China[J]. Acta Geologica Sinica, 2017, 91(7): 1454-1466.
[52] Han Q S, Peng S B, Kusky T, et al. A Paleoproterozoic ophiolitic mélange, Yangtze Craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 2017, 293: 13-38.
[53] Han Q S, Peng S B, Polat A, et al. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze Craton[J]. Lithos, 2019, 342-343: 513-529.
[54] Yin C Q, Lin S F, Davis D W, et al. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: Petrological and geochronological evidence from the Kongling complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 2013, 182-183: 200-210.
[55] 彭敏,吴元保,汪晶,等. 扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义[J]. 科学通报,2009,54(5):641-647.

Peng Min, Wu Yuanbao, Wang Jing, et al. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. Chinese Science Bulletin, 2009, 54(5): 641-647.
[56] 熊庆,郑建平,余淳梅,等. 宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用[J]. 科学通报,2008,53(22):2782-2792.

Xiong Qing, Zheng Jianping, Yu Chunmei, et al. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 2008, 53(22): 2782-2792.
[57] Wang K, Dong S W. New insights into Paleoproterozoic tectonics of the Yangtze Block in the context of early Nuna assembly: Possible collisional granitic magmatism in the Zhongxiang complex, South China[J]. Precambrian Research, 2019, 334: 105452.
[58] Wang Z J, Wang J, Deng Q, et al. Paleoproterozoic I-type granites and their implications for the Yangtze Block position in the Columbia supercontinent: Evidence from the Lengshui complex, South China[J]. Precambrian Research, 2015, 263: 157-173.
[59] 黄明达,崔晓庄,程爱国,等. 扬子北缘晚古元古代A型花岗质岩:Columbia超大陆裂解的证据[J]. 地质学报,2019,93(3):565-584.

Huang Mingda, Cui Xiaozhuang, Cheng Aiguo, et al. Late Paleoproterozoic A-type granitic rocks in the northern Yangtze Block: Evidence for breakup of the Columbia superconti-nent[J]. Acta Geologica Sinica, 2019, 93(3): 565-584.
[60] 李怀坤,张传林,相振群,等. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义[J]. 岩石学报,2013,29(2):673-697.

Li Huaikun, Zhang Chuanlin, Xiang Zhenqun, et al. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance[J]. Acta Petrologica Sinica, 2013, 29(2): 673-697.
[61] Liu K, Lu G M, Wang Z Z, et al. The Paleoproterozoic bimodal magmatism in the SW Yangtze Block: Implications for initial breakup of the Columbia supercontinent[J]. Lithos, 2019, 332-333: 23-38.
[62] 于津海, O’Reilly Y S,王丽娟,等. 华夏地块古老物质的发现和前寒武纪地壳的形成[J]. 科学通报,2007,52(1):11-18.

Yu Jinhai, O’Reilly Y S, Wang Lijuan, et al. Finding of ancient materials in the Cathaysia and implication for the formation of Precambrian crust[J]. Chinese Science Bulletin, 2007, 52(1): 11-18.
[63] Li X H. Timing of the Cathaysia Block formation: Constraints from SHRIMP U-Pb zircon geochronology[J]. Episodes, 1997, 20(3): 188-192.
[64] Yu J H, Wang L J, O'Reilly S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 2009, 174(3/4): 347-363.
[65] Zhao L, Zhou X W, Zhai M G, et al. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U-Pb geochronology and Nd-Hf isotopes of a granite-charnockite suite in southwestern Zhejiang[J]. Lithos, 2014, 184-187: 259-280.
[66] Liu Q, Yu J H, O'Reilly S Y, et al. Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China[J]. Precambrian Research, 2014, 248: 72-95.
[67] Xia Y, Xu X S, Zhu K Y. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement[J]. Precambrian Research, 2012, 216-219: 177-207.
[68] Xia Y, Xu X S. A fragment of Columbia supercontinent: Insight for Cathaysia Block basement from tectono‐magmatic evolution and mantle heterogeneity[J]. Geophysical Research Letters, 2019, 46(4): 2012-2024.
[69] Zhang A M, Ma L Y, Liu H C, et al. Identification of two-phased Late Paleoproterozoic magmatism in the Wuyishan Domain (SE China): Implications for the tectonic evolution of the Cathaysia Block[J]. Precambrian Research, 2021, 355: 106093.
[70] 汪建国,余盛强,赵旭东,等. 武夷地块中古元古代镁铁质—超镁铁质岩石的发现:剖面介绍及岩石学、岩相学、年代学特征[J]. 岩石矿物学杂志,2014,33(4):617-629.

Wang Jianguo, Yu Shengqiang, Zhao Xudong, et al. The discovery of Paleoproterozoic mafic-ultramafic rocks in the Wuyishan Block: Description of profile and characteristics of petrology, petrography and isotope geochronology[J]. Acta Petrologica et Mineralogica, 2014, 33(4): 617-629.
[71] 胡雄健,许金坤,童朝旭,等. 浙西南19亿年花岗闪长岩的地质特征及发现意义[J]. 地质论评,1993,39(6):557-563.

Hu Xiongjian, Xu Jinkun, Tong Chaoxu, et al. The geological characteristics of 1.9 Ga granodiorite in southwestern Zhejiang and its significance[J]. Geological Review, 1993, 39(6): 557-563.
[72] 赵磊,周喜文. 浙西南八都群泥质麻粒岩的变质演化与pT轨迹[J]. 岩石矿物学杂志,2012,31(1):61-72.

Zhao Lei, Zhou Xiwen. The metamorphic evolution and pT path of pelitic granulite from the Badu Group in southwestern Zhejiang province[J]. Acta Petrologica et Mineralogica, 2012, 31(1): 61-72.
[73] Yu J H, O’Reilly S Y, Zhou M F, et al. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu complex, southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Research, 2012, 222-223: 424-449.
[74] 齐靓,徐亚军,杜远生,等. 华夏地块新元古代沉积记录与超大陆重建[J]. 沉积与特提斯地质,2023,43(1):188-211.

Qi Liang, Xu Yajun, Du Yuansheng, et al. Neoproterozoic sedimentary records in the Cathaysia Block and their implications for the supercontinent reconstruction[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 188-211.
[75] Yao W H, Li Z X, Li W X, et al. Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results[J]. Precambrian Research, 2017, 290: 86-100.
[76] Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1): 5-22.
[77] Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens: Implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.
[78] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2): 91-123.
[79] Evans D A D, Mitchell R N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 2011, 39(5): 443-446.
[80] Furlanetto F, Thorkelson D J, Rainbird R H, et al. The Paleoproterozoic Wernecke Supergroup of Yukon, Canada: Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China[J]. Gondwana Research, 2016, 39: 14-40.
[81] Wang W, Cawood P A, Zhou M F, et al. Zircon U-Pb age and Hf isotope evidence for an Eoarchaean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India[J]. Journal of the Geological Society, 2017, 174(4): 759-772.
[82] Wang W, Cawood P A, Pandit M K, et al. Evolving passive- and active-margin tectonics of the Paleoproterozoic Aravalli Basin, NW India[J]. GSA Bulletin, 2019, 131(3/4): 426-443.
[83] Wang W, Cawood P A, Pandit M K. India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks[J]. American Journal of Science, 2021, 321(1/2): 83-117.
[84] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 1999, 173(3): 171-181.
[85] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2): 163-166.
[86] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67.
[87] 王孝磊,周金城,陈昕,等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报,2017,36(5):714-735.

Wang Xiaolei, Zhou Jincheng, Chen Xin, et al. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 714-735.
[88] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302.
[89] Wang X L, Zhao G C, Zhou J C, et al. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen[J]. Gondwana Research, 2008, 14(3): 355-367.
[90] Xia Y, Xu X S, Niu Y L, et al. Neoproterozoic amalgamation between Yangtze and Cathaysia Blocks: The magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 2018, 309: 56-87.
[91] Yao J L, Cawood P A, Shu L S, et al. Jiangnan orogen, South China: A ~970-820Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872.
[92] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1/2): 127-150.
[93] Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China[J]. Precambrian Research, 2008, 163(3/4): 351-383.
[94] Wang L J, Zhang K X, Lin S F, et al. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late Early Paleozoic juxtaposition of the Yangtze Block and the West Cathaysia terrane, South China[J]. GSA Bulletin, 2022, 134(1/2): 113-129.
[95] Wang L J, Lin S F, Xiao W J. Yangtze and Cathaysia Blocks of South China: Their separate positions in Gondwana until Early Paleozoic juxtaposition[J]. Geology, 2023, 51(8): 723-727.
[96] Hu P Y, Zhai Q G, Wang J, et al. The Shimian ophiolite in the western Yangtze Block, SW China: Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications[J]. Precambrian Research, 2017, 298: 107-122.
[97] Deng H, Peng S B, Polat A, et al. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 2017, 289: 75-94.
[98] Lu K, Li X H, Zhou J L, et al. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan complex[J]. Precambrian Research, 2020, 346: 105787.
[99] Sun L, Wang W, Pandit M K, et al. Geochemical and detrital zircon age constraints on Meso- to Neoproterozoic sedimentary basins in the southern Yangtze Block: Implications on Proterozoic geodynamics of South China and Rodinia configuration[J]. Precambrian Research, 2022, 378: 106779.
[100] Chen F L, Wang J, Cui X Z, et al. A latest Mesoproterozoic arc-back-arc system in the southwestern Yangtze Block, South China: Implications for paleogeographic configuration of the Rodinia supercontinent[J]. Precambrian Research, 2024, 409: 107432.
[101] Wang Y J, Zhang Y Z, Fan W M, et al. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: Geochronological, Lu-Hf isotopic and geochemical evidence from granitoid gneisses[J]. Precambrian Research, 2014, 249: 144-161.
[102] 刘鸿允. 中国震旦系[M]. 北京:科学出版社, 1991:1-388.

Liu Hongyun. The Sinian System in China[M]. Beijing: Science Press, 1991: 1-388.
[103] 王剑. 华南新元古代裂谷盆地演化:兼论与Rodinia解体的关系[M]. 北京:地质出版社,2000:1-146.

Wang Jian. Neoproterozoic rifting history of South China: significance to Rodinia breakup[M]. Beijing: Geological Publishing House, 2000: 1-146.
[104] 崔晓庄,江新胜,王剑,等. 滇中新元古代裂谷盆地充填序列及演化模式:对Rodinia超大陆裂解的响应[J]. 沉积学报,2014,32(3):399-409.

Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, et al. Filling sequence and evolution model of the Neoproterozoic rift basin in central Yunnan province, South China: Response to the breakup of Rodinia supercontinent[J]. Acta Sedimentologica Sinica, 2014, 32(3): 399-409.
[105] 王剑,江新胜,卓皆文,等. 华南新元古代裂谷盆地演化与岩相古地理[M]. 北京:科学出版社,2019:1-252.

Wang Jian, Jiang Xinsheng, Zhuo Jiewen, et al. Evolution and lithofacies paleogeography of the Neoproterozoic rift basin in South China[M]. Beijing: Science Press, 2019: 1-252.
[106] Yang F L, Zhou X F, Peng Y X, et al. Evolution of Neoproterozoic basins within the Yangtze Craton and its significance for oil and gas exploration in South China: An overview[J]. Precambrian Research, 2020, 337: 105563.
[107] 兰中伍. 华南南华系年代地层学研究进展[J]. 沉积与特提斯地质,2023,43(1):180-187.

Lan Zhongwu. Research progress on the chronostratigraphic study of Nanhua System in South China[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 180-187.
[108] 王剑,李献华, Duan T Z,等. 沧水铺火山岩锆石SHRIMP U-Pb年龄及“南华系”底界新证据[J]. 科学通报,2003,48(16):1726-1731.

Wang Jian, Li Xianhua, Duan T Z, et al. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China[J]. Chinese Science Bulletin, 2003, 48(16): 1726-1731.
[109] 王剑,曾昭光,陈文西,等. 华南新元古代裂谷系沉积超覆作用及其开启年龄新证据[J]. 沉积与特提斯地质,2006,26(4):1-7.

Wang Jian, Zeng Zhaoguang, Chen Wenxi, et al. The Neoproterozoic rift systems in southern China: New evidence for the sedimentary onlap and its initial age[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(4): 1-7.
[110] 王剑,段太忠,谢渊,等. 扬子地块东南缘大地构造演化及其油气地质意义[J]. 地质通报,2012,31(11):1739-1749.

Wang Jian, Duan Taizhong, Xie Yuan, et al. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block[J]. Geological Bulletin of China, 2012, 31(11): 1739-1749.
[111] 王剑,周小琳,郭秀梅,等. 华南新元古代盆地开启年龄及沉积演化特征:以赣东北江南次级盆地为例[J]. 沉积学报,2013,31(5):834-844.

Wang Jian, Zhou Xiaolin, Guo Xiumei, et al. The onset and sedimentary evolution of the Neoproterozoic basin in South China: A case study of the Jiangnan sub-basin, northeastern Jiangxi[J]. Acta Sedimentologica Sinica, 2013, 31(5): 834-844.
[112] Wang J, Zhou X L, Deng Q, et al. Sedimentary successions and the onset of the Neoproterozoic Jiangnan sub-basin in the Nanhua rift, South China[J]. International Journal of Earth Sciences, 2015, 104(3): 521-539.
[113] Li Z X, Mitchell R N, Spencer C J, et al. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 2019, 323: 1-5.
[114] Marsh J H, Culshaw N G. Timing and conditions of high-pressure metamorphism in the western Grenville province: Constraints from accessory mineral composition and phase equilibrium modeling[J]. Lithos, 2014, 200-201: 402-417.
[115] Wang C, Mitchell R N, Murphy J B, et al. The role of megacontinents in the supercontinent cycle[J]. Geology, 2021, 49(4): 402-406.
[116] Cawood P A, Strachan R A, Pisarevsky S A, et al. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 2016, 449: 118-126.
[117] 李献华. 超大陆裂解的主要驱动力:地幔柱或深俯冲?[J]. 地质学报,2021,95(1):20-31.

Li Xianhua. The major driving force triggering breakup of supercontinent: Mantle plumes or deep subduction?[J]. Acta Geologica Sinica, 2021, 95(1): 20-31.
[118] Xian H B, Zhang S H, Li H Y, et al. Geochronological and palaeomagnetic investigation of the Madiyi Formation, lower Banxi Group, South China: Implications for Rodinia reconstruction[J]. Precambrian Research, 2020, 336: 105494.
[119] Jing X Q, Yang Z Y, Evans D A D, et al. A pan-latitudinal Rodinia in the Tonian true polar wander frame[J]. Earth and Planetary Science Letters, 2020, 530: 115880.
[120] Evans D A D. Meso-Neoproterozoic rodinia supercycle[M]//Pesonen L J, Salminen J, Elming S Å, et al. Ancient supercontinents and the paleogeography of earth. Amsterdam: Elsevier, 2021: 549-576.
[121] Cui X Z, Lin S F, Wang J, et al. Latest Mesoproterozoic provenance shift in the southwestern Yangtze Block, South China: Insights into tectonic evolution in the context of the supercontinent cycle[J]. Gondwana Research, 2021, 99: 131-148.
[122] 沈宝丰,翟安民,陈文明,等. 中国前寒武纪成矿作用[M]. 北京:地质出版社,2006:1-322.

Shen Baofeng, Zhai Anmin, Chen Wenming, et al. The Precambrian mineralization of China[M]. Beijing: Geological Publishing House, 2006: 1-322.
[123] 孙枢,王铁冠. 中国东部中—新元古界地质学与油气资源[M]. 北京:科学出版社,2016:1-557.

Sun Shu, Wang Tieguan. Meso-Neoproterozoic geology and oil and gas resources in east China[M]. Beijing: Science Press, 2016: 1-557.
[124] 任纪舜. 论中国南部的大地构造[J]. 地质学报,1990,64(4):275-288.

Ren Jishun. On the geotectonics of southern China[J]. Acta Geologica Sinica, 1990, 64(4): 275-288.
[125] Faure M, Shu L S, Wang B, et al. Intracontinental subduction: A possible mechanism for the Early Palaeozoic orogen of SE China[J]. Terra Nova, 2009, 21(5): 360-368.
[126] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122(5/6): 772-793.
[127] Wang Y J, Zhang F F, Fan W M, et al. Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U–Pb geochronology[J]. Tectonics, 2010, 29(6): TC6020.
[128] Yao W H, Li Z X, Li W X, et al. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: Evidence from ca. 435 Ma high-Mg basalts[J]. Lithos, 2012, 154: 115-129.
[129] Xia Y, Xu X S, Zou H B, et al. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites[J]. Lithos, 2014, 184-187: 416-435.
[130] Yao W H, Li Z X. Tectonostratigraphic history of the Ediacaran-Silurian Nanhua foreland basin in South China[J]. Tectonophysics, 2016, 674: 31-51.
[131] Xu Y J, Cawood P A, Du Y S, et al. Early Paleozoic orogenesis along Gondwana’s northern margin constrained by provenance data from South China[J]. Tectonophysics, 2014, 636: 40-51.
[132] Yao W H, Li Z X, Li W X, et al. From Rodinia to Gondwanaland: A tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 2014, 314(1): 278-313.
[133] 王永磊,王登红,张长青,等. 广西钦甲花岗岩体单颗粒锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地质学报,2011,85(4):475-481.

Wang Yonglei, Wang Denghong, Zhang Changqing, et al. LA-ICP-MS zircon U-Pb dating of the Qinjia granite in Guangxi and its geologic significance[J]. Acta Geologica Sinica, 2011, 85(4): 475-481.
[134] 彭松柏,刘松峰,林木森,等. 华夏早古生代俯冲作用(I):来自糯垌蛇绿岩的新证据[J]. 地球科学,2016,41(5):765-778.

Peng Songbai, Liu Songfeng, Lin Musen, et al. Early Paleozoic subduction in Cathaysia (Ⅰ): New evidence from Nuodong ophiolite[J]. Earth Science, 2016, 41(5): 765-778.
[135] Zhang C L, Zhu Q B, Chen X Y, et al. Ordovician arc-related mafic intrusions in South China: Implications for plate subduction along the southeastern margin of South China in the Early Paleozoic[J]. The Journal of Geology, 2016, 124(6): 743-767.
[136] Lin S F, Xing G F, Davis D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(4): 319-322.
[137] Lin S F, Xing G F, Davis D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China: REPLY[J]. Geology, 2018, 46(6): e447-e448.
[138] 何卫红,唐婷婷,乐明亮,等. 华南南华纪—二叠纪沉积大地构造演化[J]. 地球科学:中国地质大学学报,2014,39(8):929-953.

He Weihong, Tang Tingting, Yue Mingliang, et al. Sedimentary and tectonic evolution of Nanhuan-Permian in South China[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(8): 929-953.
[139] 张克信,潘桂棠,何卫红,等. 中国构造—地层大区划分新方案[J]. 地球科学,2015,40(2):206-233.

Zhang Kexin, Pan Guitang, He Weihong, et al. New division of tectonic-strata superregion in China[J]. Earth Science, 2015, 40(2): 206-233.
[140] Li L M, Lin S F, Xing G F, et al. Identification of ca. 520 Ma mid-ocean-ridge–type ophiolite suite in the inner Cathaysia Block, South China: Evidence from shearing-type oceanic plagiogranite[J]. GSA Bulletin, 2022, 134(7/8): 1701-1720.
[141] 潘桂棠,陆松年,肖庆辉,等. 中国大地构造阶段划分和演化[J]. 地学前缘,2016,23(6):1-23.

Pan Guitang, Lu Songnian, Xiao Qinghui, et al. Division of tectonic stages and tectonic evolution in China[J]. Earth Science Frontiers, 2016, 23(1): 1-23.
[142] 邓晋福,冯艳芳,狄永军,等. 华南地区侵入岩时空演化框架[J]. 地质论评,2016,62(1):3-16.

Deng Jinfu, Feng Yanfang, Di Yongjun, et al. The intrusive spatial temporal evolutional framework in the southeast China[J]. Geological Review, 2016, 62(1): 3-16.
[143] 吴福元,万博,赵亮,等. 特提斯地球动力学[J]. 岩石学报,2020,36(6):1627-1674.

Wu Fuyuan, Wan Bo, Zhao Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627-1674.
[144] Shu L S, Jahn B M, Charvet J, et al. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 2014, 314(1): 154-186.
[145] Jiang B Y, Sinclair H D, Niu Y Z, et al. Late Neoproterozoic-Early Paleozoic evolution of the South China Block as a retroarc thrust wedge/foreland basin system[J]. International Journal of Earth Sciences, 2014, 103(1): 23-40.
[146] Zhao G C, Xiao W J. Reconstructions of East Asian blocks in Pangea: Preface[J]. Earth-Science Reviews, 2018, 186: 1-7.
[147] 李三忠,李玺瑶,赵淑娟,等. 全球早古生代造山带(Ⅲ):华南陆内造山[J]. 吉林大学学报(地球科学版),2016,46(4):1005-1025.

Li Sanzhong, Li Xiyao, Zhao Shujuan, et al. Global Early Paleozoic orogens (Ⅲ): Intracontinental orogen in South China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1005-1025.
[148] 刘树根,孙玮,钟勇,等. 四川海相克拉通盆地显生宙演化阶段及其特征[J]. 岩石学报,2017,33(4):1058-1072.

Liu Shugen, Sun Wei, Zhong Yong, et al. Evolutionary episodes and their characteristics within the Sichuan marine craton basin during Phanerozoic Eon, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1058-1072.
[149] 殷鸿福,吴顺宝,杜远生,等. 华南是特提斯多岛洋体系的一部分[J]. 地球科学:中国地质大学学报,1999,24(1):1-12.

Yin Hongfu, Wu Shunbao, Du Yuansheng, et al. South China defined as part of Tethyan archipelagic ocean system[J]. Earth Science: Journal of China University of Geosciences, 1999, 24(1): 1-12.
[150] Jia D, Wu L, Li H B, et al. Provenance of detrital zircons from the Late Neoproterozoic to Ordovician sandstones of South China[J]. Geochimica et Cosmochimica Acta, 2009, 73(Suppl.13): A592.
[151] 张世红,朱鸿,孟小红. 扬子地块泥盆纪—石炭纪古地磁新结果及其古地理意义[J]. 地质学报,2001,75(3):303-313.

Zhang Shihong, Zhu Hong, Meng Xiaohong. New paleomagnetic results from the Devonian-Carboniferous successions in the southern Yangtze Block and their paleogeographic implications[J]. Acta Geologica Sinica, 2001, 75(3): 303-313.
[152] Yang Z Y, Sun Z M, Yang T E S, et al. A long connection (750-380 Ma) between South China and Australia: Paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 423-434.
[153] Xu Y J, Cawood P A, Du Y S, et al. Linking South China to northern Australia and India on the margin of Gondwana: Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata[J]. Tectonics, 2013, 32(6): 1547-1558.
[154] Wang W, Cawood P A, Pandit M K, et al. Fragmentation of South China from greater India during the Rodinia-Gondwana transition[J]. Geology, 2021, 49(2): 228-232.
[155] Gu Z D, Jian X, Watts A B, et al. Formation and evolution of an early Cambrian foreland basin in the NW Yangtze Block, South China[J]. Journal of the Geological Society, 2023, 180(3): jgs2022-127.
[156] Santosh M, Groves D I. The Not-So-Boring Billion: A metallogenic conundrum during the evolution from Columbia to Rodinia supercontinents[J]. Earth-Science Reviews, 2023, 236: 104287.
[157] Lu K, Mitchell R N, Yang C, et al. Widespread magmatic provinces at the onset of the Sturtian Snowball Earth[J]. Earth and Planetary Science Letters, 2022, 594: 117736.
[158] Huang C C, Zou H, Chen H F, et al. The last Neoproterozoic rift magmatism on the western margin of Yangtze Block, South China: New insights of Marinoan onset from low-δ18O magmatic events[J]. Precambrian Research, 2023, 390: 107037.
[159] Zhao X F, Zhou M F, Li J W, et al. Late Paleoproterozoic sedimentary rock–hosted stratiform copper deposits in South China: Their possible link to the supercontinent cycle[J]. Mineralium Deposita, 2013, 48(1): 129-136.
[160] Huang X W, Zhao X F, Qi L, et al. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China[J]. Chemical Geology, 2013, 347: 9-19.
[161] Chen W T, Zhou M F. Ages and compositions of primary and secondary allanite from the Lala Fe-Cu deposit, SW China: Implications for multiple episodes of hydrothermal events[J]. Contributions to Mineralogy and Petrology, 2014, 168(2): 1043.
[162] Zhu Z M, Tan H Q, Liu Y D, et al. Multiple episodes of mineralization revealed by Re-Os molybdenite geochronology in the Lala Fe-Cu deposit, SW China[J]. Mineralium Deposita, 2018, 53(3): 311-322.
[163] 耿元生,旷红伟,杜利林,等. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报,2019,35(8):2299-2324.

Geng Yuansheng, Kuang Hongwei, Du Lilin, et al. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent[J]. Acta Petrologica Sinica, 2019, 35(8): 2299-2324.
[164] 刘宝珺,许效松,潘杏南,等. 中国南方古大陆沉积地壳演化与成矿[M]. 北京:科学出版社,1993:1-236.

Liu Baojun, Xu Xiaosong, Pan Xingnan, et al. Evolution and mineralization of ancient mainland sedimentary earth crust of south region in China[M]. Beijing: Science Press, 1993: 1-236.
[165] 杜远生,余文超,周琦,等. 超大陆裂解与中国大规模成锰作用的耦合关系探讨[J]. 古地理学报,2023,25(6):1211-1234.

Du Yuansheng, Yu Wenchao, Zhou Qi, et al. Discussion about the coupling relationship between the breakup of supercontinent and the large-scale manganese accumulation in China[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(6): 1211-1234.
[166] 周琦,杜远生,覃英. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式:以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例[J]. 矿床地质,2013,32(3):457-466.

Zhou Qi, Du Yuansheng, Qin Ying. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: A case study of ‘Datangpo type’ manganese deposits formed in rift basin of Nanhua period along Guizhou-Hunan-Chongqing border area[J]. Mineral Deposits, 2013, 32(3): 457-466.
[167] 周琦,杜远生,袁良军,等. 古天然气渗漏沉积型锰矿床找矿模型:以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例[J]. 地质学报,2017,91(10):2285-2298.

Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. Exploration models of ancient natural gas seep sedimentary-type manganese ore deposit: A case study of the Nanhua period “Datangpo” type manganese ore in the conjunction area of Guizhou, Hunan and Chongqing[J]. Acta Geologica Sinica, 2017, 91(10): 2285-2298.
[168] 杜远生,周琦,余文超,等. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用[J]. 地质科技情报,2015,34(6):1-7.

Du Yuansheng, Zhou Qi, Yu Wenchao, et al. Linking the Cryogenian manganese metallogenic process in the southeast margin of Yangtze Block to break-up of Rodinia supercontinent and Sturtian Glaciation[J]. Geological Science and Technology Information, 2015, 34(6): 1-7.
[169] 余文超,杜远生,周琦,等. 华南成冰纪“大塘坡式”锰矿沉积成矿作用与重大地质事件的耦合关系[J]. 古地理学报,2020,22(5):855-871.

Yu Wenchao, Du Yuansheng, Zhou Qi, et al. Coupling between metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and major geological events[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(5): 855-871.
[170] Yu W C, Polgári M, Gyollai I, et al. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research, 2019, 322: 122-135.
[171] Craig J, Thurow J, Thusu B, et al. Global Neoproterozoic petroleum systems: The emerging potential in North Africa[M]//Craig J, Thurow J, Whitham A, et al. Global Neoproterozoic petroleum systems: The emerging potential in North Africa. Geological Society, London, Special Publication, 2009, 326(1): 1-24.
[172] Gaucher C, Sial A N, Halverson G P, et al. Neoproterozoic-Cambrian tectonics, global change and evolution: A focus on south western Gondwana[J]. Developments in Precambrian Geology, 2009, 16: iii.
[173] 王铁冠,韩克猷. 论中—新元古界的原生油气资源[J]. 石油学报,2011,32(1):1-7.

Wang Tieguan, Han Keyou. On Meso-Neoproterozoic primary petroleum resources[J]. Acta Petrolei Sinica, 2011, 32(1): 1-7.
[174] 邹才能,杜金虎,徐春春,等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,2014,41(3):278-293.

Zou Caineng, Du Jinhu, Xu Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
[175] 魏国齐,杨威,谢武仁,等. 四川盆地震旦系—寒武系大气田形成条件、成藏模式与勘探方向[J]. 天然气地球科学,2015,26(5):785-795.

Wei Guoqi, Yang Wei, Xie Wuren, et al. Formation conditions, accumulation models and exploration direction of large gas fields in Sinian-Cambrian, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(5): 785-795.
[176] 杜金虎,汪泽成,邹才能,等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报,2016,37(1):1-16.

Du Jinhu, Wang Zecheng, Zou Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16.
[177] 刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版),2013,40(5):511-520.

Liu Shugen, Sun Wei, Luo Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520.
[178] 赵文智,胡素云,汪泽成,等. 中国元古界—寒武系油气地质条件与勘探地位[J]. 石油勘探与开发,2017,45(1):1-13.

Zhao Wenzhi, Hu Suyun, Wang Zecheng, et al. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-13.
[179] Hoffman P F, Abbot D S, Ashkenazy Y, et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11): e1600983.
[180] 郞咸国,陈家乐. 成冰纪全球冰期事件的环境效应研究进展[J]. 沉积与特提斯地质,2023,43(3):651-660.

Lang Xianguo, Chen Jiale. Research progress on environmental effects of the Cryogenian global glaciation[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(3): 651-660.
[181] Ernst R E, Hamilton M A, Söderlund U, et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic[J]. Nature Geoscience, 2016, 9(6): 464-469.
[182] Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
[183] Bradley D C. Secular trends in the geologic record and the supercontinent cycle[J]. Earth-Science Reviews, 2011, 108(1/2): 16-33.
[184] Cox G M, Jarrett A, Edwards D, et al. Basin redox and primary productivity within the Mesoproterozoic Roper Seaway[J]. Chemical Geology, 2016, 440: 101-114.