[1] |
Leeder M R, Gawthorpe R L. Sedimentary models for extensional tilt-block/half-graben basins[J]. Geological Society, London, Special Publications, 1987, 28(1): 139-152. |
[2] |
Clarke P, Parnell J. Facies analysis of a back-tilted lacustrine basin in a strike-slip zone, Lower Devonian, Scotland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 151(1/2/3): 167-190. |
[3] |
Biggs J, Nissen E, Craig T, et al. Breaking up the hanging wall of a rift-border fault: The 2009 Karonga earthquakes, Malawi[J]. Geophysical Research Letters, 2010, 37(11): L11305. |
[4] |
Fraser G D, Witkind I J, Nelson W H. A geological interpretation of the epicentral area-the dual-basin concept[R]. U.S. Geological Survey Professional Paper, 1964, 435: 99-106. |
[5] |
Gawthorpe R L, Leeder M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12(3/4): 195-218. |
[6] |
Pechlivanidou S, Cowie P A, Duclaux G, et al. Tipping the balance: Shifts in sediment production in an active rift setting[J]. Geology, 2019, 47(3): 259-262. |
[7] |
刘震,曾宪斌,张万选. 构造掀斜对单断湖盆湖平面变化的影响[J]. 沉积学报,1997,15(4):64-66.
Liu Zhen, Zeng Xianbin, Zhang Wanxuan. Effect of tectonic tilt of faulted blocks on lake level change of single faulted continental basins[J]. Acta Sedimentologica Sinica, 1997, 15(4): 64-66. |
[8] |
任建业,陆永潮,张青林. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制[J]. 地球科学:中国地质大学学报,2004,29(5):596-602.
Ren Jianye, Lu Yongchao, Zhang Qinglin. Forming mechanism of structural slope-break and its control on sequence style in faulted basin[J]. Earth Science: Journal of China University of Geosciences, 2004, 29(5): 596-602. |
[9] |
Wu H, Ji Y L, Wu C L, et al. Stratigraphic response to spatiotemporally varying tectonic forcing in rifted continental basin: Insight from a coupled tectonic-stratigraphic numerical model[J]. Basin Research, 2019, 31(2): 311-336. |
[10] |
阳孝法,林畅松,彭莉,等. 幕式构造沉降过程中可容纳空间的变化规律:以掀斜式半地堑盆地为例[J]. 大庆石油地质与开发,2010,29(4):18-22.
Yang Xiaofa, Lin Changsong, Peng Li, et al. Evolution laws of the accommodation space in the course of episodic tectonic subsidence: A case from tilted half-graben basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2010, 29(4): 18-22. |
[11] |
Gawthorpe R L, Fraser A J, Collier R E L. Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin-fills[J]. Marine and Petroleum Geology, 1994, 11(6): 642-658. |
[12] |
林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20.
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. |
[13] |
谈明轩,朱筱敏,张自力,等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118.
Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “source-to-sink” systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118. |
[14] |
陆威延,朱红涛,徐长贵,等. 源—汇系统级次划分方法及应用[J]. 地球科学,2020,45(4):1327-1336.
Lu Weiyan, Zhu Hongtao, Xu Changgui, et al. Methods and applications of level subdivision of source-to-sink system[J]. Earth Science, 2020, 45(4): 1327-1336. |
[15] |
邵龙义,王学天,李雅楠,等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报,2019,21(1):67-81.
Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81. |
[16] |
操应长,徐琦松,王健. 沉积盆地“源—汇”系统研究进展[J]. 地学前缘,2018,25(4):116-131.
Cao Yingchang, Xu Qisong, Wang Jian. Progress in “source-to-sink” system research[J]. Earth Science Frontiers, 2018, 25(4): 116-131. |
[17] |
Ding X S, Salles T, Flament N, et al. Drainage and sedimentary responses to dynamic topography[J]. Geophysical Research Letters, 2019, 46(24): 14385-14394. |
[18] |
Ding X S, Salles T, Flament N, et al. Quantitative stratigraphic analysis in a source-to-sink numerical framework[J]. Geoscientific Model Development, 2019, 12(6): 2571-2585. |
[19] |
Salles T, Ding X S, Brocard G. pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time[J]. PLoS One, 2018, 13(4): e0195557. |
[20] |
刘泽,李三忠, Bukhari S W H,等. 动态古地貌再造:Badlands软件在盆地分析中的应用[J]. 古地理学报,2020,22(1):29-38.
Liu Ze, Li Sanzhong, Bukhari S W H, et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis[J]. Journal of Palaeogeography, 2020, 22(1): 29-38. |
[21] |
Burgess P M. A brief review of developments in stratigraphic forward modelling, 2000–2009[M]//Roberts D G, Bally A M. Regional geology and tectonics: Principles of geologic analysis. Amsterdam: Elsevier, 2012: 378-404. |
[22] |
Huang X, Griffiths C M, Liu J. Recent development in stratigraphic forward modelling and its application in petroleum exploration[J]. Australian Journal of Earth Sciences, 2015, 62(8): 903-919. |
[23] |
Chen A, Darbon J, Morel J M. Landscape evolution models: A review of their fundamental equations[J]. Geomorphology, 2014, 219: 68-86. |
[24] |
Clevis Q, de Boer P, Wachter M. Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy[J]. Sedimentary Geology, 2003, 163(1/2): 85-110. |
[25] |
操应长,姜在兴,夏斌. 幕式差异沉降运动对断陷湖盆中湖平面和水深变化的影响[J]. 石油实验地质,2003,25(4):323-327.
Cao Yingchang, Jiang Zaixing, Xia Bin. Effects of episodic differential subsidence on the changes of lake level and water depth in rift lake basins[J]. Petroleum Geology & Experiment, 2003, 25(4): 323-327. |
[26] |
Stock J D, Montgomery D R. Geologic constraints on bedrock river incision using the stream power law[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 4983-4993. |
[27] |
Syvitski J P M, Kettner A J. Scaling sediment flux across landscapes[C]//Proceedings of the sediment dynamics in changing environments. New Zealand: IAHS, 2008: 149-156. |
[28] |
Emmel B, de Jager G, Zieba K, et al. A 3D, map based approach to reconstruct and calibrate palaeo-bathymetries – Testing the Cretaceous water depth of the Hammerfest Basin, southwestern Barents Sea[J]. Continental Shelf Research, 2015, 97: 21-31. |
[29] |
林畅松,李思田,任建业. 断陷湖盆层序地层研究和计算机模拟:以二连盆地乌里雅斯太断陷为例[J]. 地学前缘,1995,2(3/4):124-132.
Lin Changsong, Li Sitian, Ren Jianye. Sequence architecture and depositional systems of Erlian lacustrine fault basins, North China[J]. Earth Science Frontiers, 1995, 2(3/4): 124-132. |
[30] |
Bohacs K M, Carroll A R, Neal J E, et al. Lake-Basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic-geochemical framework[M]//Gierlowski-Kordesch E H, Kelts K R. Lake basins through space and time. AAPG Studies in Geology 46, Tulsa: AAPG, 2000: 3-34. |
[31] |
Cross N E, Bosence D W J. Tectono-sedimentary models for rift-basin carbonate systems[M]//Lukasik J, Simo J A. Controls on carbonate platform and reef development. SEPM Special Publication 89, Tulsa: SEPM, 2008: 83-105. |
[32] |
Scholz C A, Moore T C, Hutchinson D R, et al. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 140(1/2/3/4): 401-420. |
[33] |
Mats V D, Fujii S, Mashiko K, et al. Changes in lake baikal water levels and runoff direction in the Quaternary Period[M]//Minoura K. Lake baikal. Amsterdam: Elsevier, 2000: 15-34. |
[34] |
Mats V D, Perepelova T I. A new perspective on evolution of the Baikal Rift[J]. Geoscience Frontiers, 2011, 2(3): 349-365. |
[35] |
Colman S M. Water-level changes in Lake Baikal, Siberia: Tectonism versus climate[J]. Geology, 1998, 26(6): 531-534. |
[36] |
Urabe A, Tateishi M, Inouchi Y, et al. Lake-level changes during the past 100, 000 years at Lake Baikal, southern Siberia[J]. Quaternary Research, 2004, 62(2): 214-222. |
[37] |
Osipov E Y, Khlystov O M. Glaciers and meltwater flux to Lake Baikal during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294(1/2): 4-15. |
[38] |
Katsuta N, Ikeda H, Shibata K, et al. Hydrological and climate changes in southeast Siberia over the last 33 kyr[J]. Global and Planetary Change, 2018, 164: 11-26. |