[1] Tan H B, Su J B, Xu P, et al. Enrichment mechanism of Li, B and K in the geothermal water and associated deposits from the Kawu area of the Tibetan Plateau: Constraints from geochemical experimental data[J]. Applied Geochemistry, 2018, 93: 60-68.
[2] 郑绵平,王秋霞,多吉. 水热成矿新类型:西藏铯硅华矿床[M]. 北京:地质出版社,1995:1-117.

Zheng Mianping, Wang Qiuxia, Ji Duo. A new hydrothermal metallogenic type of cesium-silicate deposit in Tibet[M]. Beijing: Geological Publishing House, 1995: 1-117.
[3] 后立胜,李效广,金若时,等. 中国盐湖卤水锂资源禀赋分析与策略建议[J]. 资源与产业,2016,18(5):55-61.

Hou Lisheng, Li Xiaoguang, Jin Ruoshi, et al. China's saline lithium resources and suggestion[J]. Resources & Industries, 2016, 18(5): 55-61.
[4] 赵元艺. 中国盐湖锂资源及其开发进程[J]. 矿床地质,2003,22(1):99-106.

Zhao Yuanyi. Saline lake lithium resources of China and its exploitation[J]. Mineral Deposits, 2003, 22(1): 99-106.
[5] Musashi M, Nomura M, Okamoto M, et al. Regional variation in the boron isotopic composition of hot spring waters from central Japan[J]. Geochemical Journal, 1988, 22(5): 205-214.
[6] Barbier E. Geothermal energy technology and current status: An overview[J]. Renewable and Sustainable Energy Reviews, 2002, 6(1/2): 3-65.
[7] 侯增谦,李振清,曲晓明,等. 0.5Ma以来的青藏高原隆升过程:来自冈底斯带热水活动的证据[J]. 中国科学(D辑):地球科学,2001,31(增刊1):27-33.

Hou Zengqian, Li Zhenqing, Qu Xiaoming, et al. The uplifting processes of the Tibetan Plateau since 0.5 Ma B.P.:Evidence from hydrothermal activity in the Gangdise Belt[J]. Science China (Seri. D): Earth Sciences, 2001, 31(Suppl.1): 27-33.
[8] 赵平,多吉,谢鄂军,等. 中国典型高温热田热水的锶同位素研究[J]. 岩石学报,2003,19(3):569-576.

Zhao Ping, Ji Duo, Xie Ejun, et al. Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China[J]. Acta Petrologica Sinica, 2003, 19(3): 569-576.
[9] Guo Q H, Liu M L, Li J X, et al. Fluid geochemical constraints on the heat source and reservoir temperature of the Banglazhang hydrothermal system, Yunnan-Tibet geothermal province, China[J]. Journal of Geochemical Exploration, 2017, 172: 109-119.
[10] Tonarini S, Agostini S, Doglioni C, et al. Evidence for serpentinite fluid in convergent margin systems: The example of El Salvador (central America) arc lavas[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): Q09014.
[11] Bebout G E, Ryan J G, Leeman W P, et al. Fractionation of trace elements by subduction-zone metamorphism-effect of convergent-margin thermal evolution[J]. Earth and Planetary Science Letters, 1999, 171(1): 63-81.
[12] Millot R, Scaillet B, Sanjuan B. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach[J]. Geochimica et Cosmochimica Acta, 2010, 74(6): 1852-1871.
[13] 苏嫒娜,田世洪,侯增谦,等. 锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用[J]. 现代地质,2011,25(2):236-242.

Su Yuanna, Tian Shihong, Hou Zengqian, et al. Lithium isotope and its application to Jiajika pegmatite type lithium polymetallic deposit in Sichuan[J]. Geoscience, 2011, 25(2): 236-242.
[14] 赵文津,赵逊,史大年,等. 喜马拉雅和青藏高原深剖面(INDEPTH)研究进展[J]. 地质通报,2002,21(11):691-700.

Zhao Wenjin, Zhao Xun, Shi Danian, et al. Progress in the study of deep (INDEPTH) profiles in the Himalayas and Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 2002, 21(11): 691-700.
[15] 多吉. 典型高温地热系统:羊八井热田基本特征[J]. 中国工程科学,2003,5(1):42-47.

Ji Duo. The basic characteristics of the Yangbajing geothermal field-a typical high temperature geothermal system[J]. Engineering Science, 2003, 5(1): 42-47.
[16] Chevalier M L, Tapponnier P, van der Woerd J, et al. Late Quaternary extension rates across the northern half of the Yadong‐Gulu rift: Implication for east-west extension in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7): e2019JB019106.
[17] Zheng Y C, Hou Z Q, Fu Q, et al. Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 2016, 264: 125-140.
[18] 韩同林. 试论西藏地震带及地震烈度的区域划分[J]. 地球学报,1989,11(19):53-61.

Han Tonglin. On the seismic belts and the division of seismic intensity in Xizang (Tibet)[J]. Acta Geoscientica Sinica, 1989,11(19):53-61.
[19] 潘桂棠. 青藏高原及邻区1/150万地质图说明书[R]. 成都:成都地质矿产研究所,2004.

Pan Guitang. Manual of 1/1.5 million geological map of Qinghai-Tibet Plateau and adjacent areas[R]. Chengdu: Chengdu Institute of Geology and Mineral Resources, 2004.
[20] 张朝锋,史强林,张玲娟. 青藏高原新生代岩浆活动与地热关系探讨[J]. 中国地质调查,2018,5(2):18-24.

Zhang Chaofeng, Shi Qianglin, Zhang Lingjuan. Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau[J]. Geological Survey of China, 2018, 5(2): 18-24.
[21] 张英,冯建赟,何治亮,等. 地热系统类型划分与主控因素分析[J]. 地学前缘,2017,24(3):190-198.

Zhang Ying, Feng Jianyun, He Zhiliang, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3): 190-198.
[22] 牟保磊. 元素地球化学[M]. 北京:北京大学出版社,1999:1-227.

Mou Baolei. Element geochemistry[M]. Beijing: Peking University Press, 1999: 1-227.
[23] Brugger J, Long N, McPhail D C, et al. An active amagmatic hydrothermal system: The Paralana hot springs, northern Flinders Ranges, South Australia[J]. Chemical Geology, 2005, 222(1/2): 35-64.
[24] Michard G. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas[J]. Chemical Geology, 1990, 89(1/2): 117-134.
[25] Fournier R O, Rowe J J. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells[J]. American Journal of Science, 1966, 264(9): 685-697.
[26] Bargar K E. Geology and thermal history of mammoth hot springs, Yellowstone National Park, Wyoming[M]. U.S. Government Printing Office, 1978.
[27] 赵元艺,崔玉斌,赵希涛. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报,2010,29(1):124-141.

Zhao Yuanyi, Cui Yubin, Zhao Xitao. Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 2010, 29(1): 124-141.
[28] Spivack A J, Edmond J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033-1043.
[29] Vengosh A, Helvacı C, Karamanderesi İ H. Geochemical constraints for the origin of thermal waters from western Turkey[J]. Applied Geochemistry, 2002, 17(3): 163-183.
[30] 吕苑苑,郑绵平,赵平,等. 滇藏地热带地热水硼同位素地球化学过程及其物源示踪[J]. 中国科学(D辑):地球科学,2014,44(9):1968-1979.

Yuanyuan Lü, Zheng Mianping, Zhao Ping, et al. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zone[J]. Science China (Seri. D): Earth Sciences, 2014, 44(9): 1968-1979.
[31] Tomascak P B, Carlson R W, Shirey S B. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS[J]. Chemical Geology, 1999, 158(1/2): 145-154.
[32] Chan L H, Starinsky A, Katz A. The behavior of lithium and its isotopes in oilfield brines: Evidence from the Heletz-Kokhav field, Israel[J]. Geochimica et Cosmochimica Acta, 2002, 66(4): 615-623.
[33] Vigier N, Decarreau A, Millot R, et al. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 780-792.
[34] Liu C Q, Zhao Z Q, Wang Q L, et al. Isotope compositions of dissolved lithium in the rivers Jinshajiang, Lancangjiang, and Nujiang: Implications for weathering in Qinghai-Tibet Plateau[J]. Applied Geochemistry, 2011, 26: S357-S359.
[35] Arnórsson S, Andrésdóttir A. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4125-4146.
[36] Reyes A G, Trompetter W J. Hydrothermal water-rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand[J]. Chemical Geology, 2012, 314-317: 96-112.
[37] Delgado-Outeiriño I, Araujo-Nespereira P, Cid-Fernández J A, et al. Behaviour of thermal waters through granite rocks based on residence time and inorganic pattern[J]. Journal of Hydrology, 2009, 373(3/4): 329-336.
[38] Hulston J R, Lupton J E. Helium isotope studies of geothermal fields in the Taupo volcanic zone, New Zealand[J]. Journal of Volcanology and Geothermal Research, 1996, 74(3/4): 297-321.
[39] Yoshiike Y. Variation in the chemical composition of Obuki Spring, Tamagawa Hot Springs (1951–2000)[J]. Geochemical Journal, 2003, 37(6): 649-662.
[40] Delmelle P, Bernard A, Kusakabe M, et al. Geochemistry of the magmatic–hydrothermal system of Kawah Ijen volcano, East Java, Indonesia[J]. Journal of Volcanology and Geothermal Research, 2000, 97(1/2/3/4): 31-53.
[41] Bernard R, Taran Y, Pennisi M, et al. Chloride and Boron behavior in fluids of Los Humeros geothermal field (Mexico): A model based on the existence of deep acid brine[J]. Applied Geochemistry, 2011, 26(12): 2064-2073.
[42] Sorey M L, Colvard E M. Hydrologic investigations in the Mammoth Corridor, Yellowstone National Park and vicinity, U.S.A.[J]. Geothermics, 1997, 26(2): 221-249.
[43] Gupta H K, Roy S. Geothermal energy: An alternative resource for the 21st century[M]. Amsterdam: Elsevier, 2007.
[44] Hildreth W. Gradients in silicic magma chambers: Implications for lithospheric magmatism[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B11): 10153-10192.
[45] Giggenbach W F. Variations in the chemical and isotopic composition of fluids discharged from the Taupo volcanic zone, New Zealand[J]. Journal of Volcanology and Geothermal Research, 1995, 68(1/2/3): 89-116.
[46] 李振清,侯增谦,聂凤军,等. 藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J]. 地质学报,2005,79(1):68-77.

Li Zhenqing, Hou Zengqian, Nie Fengjun, et al. Characteristic and distribution of the partial melting layers in the upper crust: Evidence from active hydrothermal fluid in the south Tibet[J]. Acta Geologica Sinica, 2005, 79(1): 68-77.
[47] Tan H B, Zhang Y F, Zhang W J, et al. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 2014, 51: 23-32.
[48] Jiang S Y, Radvanec M, Nakamura E, et al. Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution[J]. Lithos, 2008, 106(1/2): 1-11.
[49] Tonarini S, Dini A, Pezzotta F, et al. Boron isotopic composition of zoned (schorl-elbaite) tourmalines, Mt. Capanne Li-Cs pegmatites, Elba (Italy)[J]. European Journal of Mineralogy, 1998, 10(5): 941-951.
[50] Smith M P, Yardley B W D. The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1996, 60(8): 1415-1427.
[51] Jiang S Y, Yang J H, Novák M, et al. Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite, Czech Republic[J]. Geochemical Journal, 2003, 37(5): 545-556.
[52] Zhang W J, Tan H B, Zhang Y F, et al. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation[J]. Applied Geochemistry, 2015, 63: 436-445.
[53] Brenan J M, Neroda E, Lundstrom C C, et al. Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraints from mineral-melt partitioning experiments[J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2129-2141.
[54] Ma T T, Weynell M, Li S L, et al. Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments[J]. Geochimica et Cosmochimica Acta, 2020, 280: 46-65.
[55] Kısakűrek B, James R H, Harris N B W. Li and δ7Li in Himalayan rivers: Proxies for silicate weathering?[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 387-401.
[56] 滕吉文,宋鹏汉,刘有山,等. 青藏高原“亚东—东巧—葫芦湖”大陆裂谷带形成的深层动力过程[J]. 地球物理学报,2019,62(9):3321-3339.

Teng Jiwen, Song Penghan, Liu Youshan, et al. Deep dynamics for the Yadong-Dongqiao-Huluhu rift in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2019, 62(9): 3321-3339.
[57] 张文杰. 东昆仑山北坡典型河流—尾闾湖系统B、Li物源与富集机制[D]. 南京:河海大学,2016.

Zhang Wenjie. Provenance and enrichment mechanism of B and Li in typical river-lake system on the northern slope of east Kunlun Mountains[D]. Nanjing: Hohai University, 2016.
[58] Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910.