文章编号:1000-0550(2025)03-0894-18

平衡指数解释深水、浅水三角洲地貌的差异

王俊辉^{1,2},张伟^{1,2},李莉^{1,2},鲜本忠^{1,2},周源^{1,2} 1.油气资源与工程全国重点实验室,中国石油大学(北京),北京 102249 2.中国石油大学(北京)地球科学学院,北京 102249

摘 要【目的】盆地水深影响着沉积物在三角洲水上和水下分配的比例。相较于深水三角洲,浅水三角洲中更多的沉积物分 配在水上(陆上)部分,河床沉积速率高,造成其分流河道的活动性更显著。近年来提出的平衡指数模型(G_{index})定量描述了这一 过程。【方法】详述平衡指数的由来、理论模型、实验验证、实例应用,并讨论其局限性。【结果】平衡指数中的"平衡"是指河流无净 沉积、无净侵蚀、沉积物过路不留的动态平衡状态。平衡指数定义为单位时间内沉积物分配在陆上的体积和供给的总体积之 比,它可以表达为盆地水深的函数。由其定义可知,G_{index}是介于0~1之间的无量纲数,其值越接近于0,表明沉积于陆上的沉积物 越少,分流河道越接近平衡状态,越稳定;反之,当G_{index}是介于0~1之间的无量纲数,其值越接近于0,表明沉积于陆上的沉积物 越少,分流河道越接近平衡状态,越稳定;反之,当G_{index}想接近于1,分流河道越远离平衡状态,越不稳定。平衡指数能够定量表 征三角洲的进积速率、加积速率、分流河道迁移速率、决口周期等重要的地貌动力学参数。自然界中的三角洲均有其特定的平衡指数,因此平衡指数模型约束下的三角洲主要地貌动力学参数均可以进行预测。平衡指数定量表达了盆地水深单一因素对 三角洲地貌动力学特征的"贡献",任何除水深之外影响沉积物分配和河流活动性的其他因素(如回水作用、波浪、潮汐、沿岸流、 植被、人为因素等),平衡指数模型均未包含在内。【结论】平衡指数模型一方面能够揭示深水、浅水三角洲地貌差异性的原理,另 一方面有助于解释除水深之外的其他因素对三角洲地貌演变的影响。平衡指数模型在现代河流一三角洲体系中具有普遍应用 的潜力,在古代沉积体系中的应用有待进一步挖掘。

关键词 三角洲;水深;地貌动力学;平衡指数;水槽实验

第一作者简介 王俊辉,男,1988年出生,副教授,博士生导师,碎屑体系沉积学与实验地层学,E-mail: wangjunhui@cup.edu.cn

中图分类号 P512.2 文献标志码 A

DOI: 10.14027/j.issn.1000-0550.2024.087 CSTR: 32268.14/j.cjxb.62-1038.2024.087

0 引言

盆地水深深刻影响三角洲发育、演化,其产生的 影响不亚于河流、波浪、潮汐这些外部驱动作用,能 够控制三角洲的沉积过程和沉积特征,因而历来备 受关注。例如,Fisk *et al.*¹¹在研究美国密西西比河三 角洲时认为盆地水深对三角洲砂体分布具有重要的 控制作用,因而将三角洲划分为浅水三角洲和深水 三角洲;Postma¹²¹也将水深作为重要的参数,结合供 源体特征、构造背景,将三角洲分为12种类型。 Porebski *et al.*¹³¹认为发育在大陆架不同位置处的三角 洲由于水深梯度的差异而表现出不同的特征,将三 角洲分为内陆架型、中陆架型、陆架边缘型。 Edmonds et al.^[4]研究也发现,当分流河道深度(h_e)大 于前积层厚度(f;小于等于盆地水深)时,三角洲便不 再发育典型的吉尔伯特式的三层结构(以前积层为 主),提出浅水背景下的顶积层型三角洲。在国内, 深水、浅水三角洲也是沉积学的重要议题^[5-7]。例如, 在三角洲分类方面,吴胜和等^[8]建议有必要从水深的 角度对三角洲进行分类,并将三角洲划分为极浅水 三角洲、较浅水三角洲和较深水三角洲;在沉积过程 方面,前人基于现代洞庭湖和鄱阳湖浅水三角洲等 实例开展了大量的考察和观测^[9-14],并开展物理和数 值模拟^[15-20];在沉积模式方面,大量学者通过对鄂尔 多斯盆地、松辽盆地、渤海湾盆地、准噶尔盆地等含 油气盆地浅水三角洲的识别,进一步研究了其相带

收稿日期:2024-04-08;修回日期:2024-07-09;录用日期:2024-09-25;网络出版日期:2024-09-25

基金项目:国家自然科学基金项目(42172108);中国石油大学(北京)科研基金项目(2462020BJRC002, 2462022YXZZ010)[Foundation: National Natural Science Foundation of China, No. 42172108; Science Foundation of China University of Petroleum, Beijing, No. 2462020BJRC002, 2462022YXZZ010]

的分布特征,指导了油气勘探[12,21-28]。

目前,对浅水、深水三角洲达成的比较统一的认 识是,盆地水深越浅,三角洲分流河道的活动性更 强,频繁分叉、改道,导致分流河道大量发育^[15,29-35]。 因此,对于浅水三角洲,其朵体往往相互叠置^[13,36-38]。 这些共识表明,相较于深水三角洲,浅水三角洲中更 多的沉积物沉积于平原相带,使得陆上部分沉积速 率相对较高,分流河道活动性从而更强。这意味着, 盆地水深影响着沉积物在三角洲体系水上部分和水 下部分分配的比例。

为了定量表征水深对沉积物分配的影响,近年 提出平衡指数(G_{index})的概念模型^[31,39],从机理上解释 了盆地水深如何控制着沉积物在三角洲体系内部的 分配。本文首先通过经典水槽实验直观地说明盆地 水深如何影响沉积物在水上和水下的分配,介绍平 衡指数的由来。然后通过现有的理论模型和实验模 拟,阐明平衡指数模型的含义以及平衡指数与主要 地貌动力学参数的关系。最后,结合现代三角洲实 例探讨平衡指数模型潜在的应用,并讨论平衡指数 模型的局限性。本文不试图对深水、浅水三角洲的 概念进行定义;相关的讨论也仅限于盆地水深单一 参数对三角洲发育的影响,蓄水体的波浪、潮汐、沿 岸流等其他因素的影响也不予考虑。

1 水深对三角洲沉积物分配的控制

在河流末端,沉积物卸载,部分沉积于陆上、部 分沉积于水下,形成三角洲。沉积物在陆上、水下分 配的比例受盆地水深的控制,这进一步决定着分流 河道的活动性:越多的沉积物沉积于水上,分流河道 因此表现得越不稳定,越容易决口、改道、迁移^[40]。水 槽实验证实,盆地水深控制着沉积物在水上和水下 分配的数量,进而控制着分流河道的活动性。

1.1 盆地水深横向变化时三角洲发育的水槽实验 模拟

Muto et al.^[41]研究了盆地水深在平行岸线方向有 差异时三角洲的发育过程。在该实验中(图1a),将 一个相邻两边受垂直侧壁限制的正方形底板(1 m× 1 m)水平放置于水中,淹没至水下7.2 cm,构成一个 张角为90°、水深为7.2 cm的蓄水沉积盆地。携带沉 积物的水流自盆地顶角处供给,供给速率恒定(水供 给速率 Q_w=14.96 cm³/s;沉积物供给速率 Q_s=20.1~ 21.3 cm³/s),由此形成向盆地方向进积的、顶角为90° 的三角洲。为了实现盆地水深沿岸变化,将顶角为 30°、高度为6.5 cm的三角形平台置于盆地中,三角 形平台的顶角与盆地顶角重合,这样在三角形平台 顶部形成水深为0.7 cm的浅水区,三角形平台之外 是水深为7.2 cm的深水区。

Fig.1 Design of tank experiment to model a delta prograding into a basin with changing water depth in the transverse direction (after reference [41])

(a) wedge-shaped platform with 30° central angle in a tank with a horizontal base and two vertical walls at 90° forming a basin which is divided by the platform into a shallow water part above the platform and a deep-water part away from the platform. Sediment-laden flow is supplied from the corner of the walls at constant discharge (sediment supply rate Q_x and water supply rate Q_y); (b) channel activity recorded as the azimuth position of the channel mouth relative to the delta apex

实验分三组进行。其中,A组为参考组,不置入 三角形平台,盆地水深为均一值7.2 cm。B、C两组为 对照实验组,B组在盆地中间位置置入一个三角形平 台,使得盆地左右两侧各1/3 的范围为深水区 (7.2 cm),盆地中间1/3 为浅水区(0.7 cm);C组在盆 地两侧各置入一个三角形平台,使得盆地左右两侧 各1/3 的范围为浅水区(0.7 cm),盆地中间1/3 为深水 区(7.2 cm)(图2a)。在A组实验中,三角洲自顶点向 盆地进积过程中,前方的水深恒定;B、C两组实验中, 三角洲进积至或深水或浅水区。在实验过程中,定 时记录河口相对于三角洲顶点的方位角以记录分流 河道的活动性(图1b)。

在三组实验中,三角洲的形态高度相似——岸 线总是保持近似轴对称的弧形向前推进(图2b),表 明三角洲在进积过程中"无视"前方水深变化,其形 态不受水深的控制。这说明三角洲在进积过程中, 总是倾向于保持其平原面积在深水区与浅水区相 当,而由于三角洲在深水区具有更大的厚度,三角洲 在深水区分配的沉积物体积也因此大于浅水区。这 表明了分流河道在沿岸线迁移摆动过程中,面对不 同的水深区间时,其在深水区活动的时间要多于浅 水区,以保证向深水区供给更多的沉积物。从图2c 所记录的河口位置随时间的变化可以看出,在B组 实验中,河口在中间1/3(浅水区)的累积时长明显小 于其在两侧(深水区)的累积时长;C组则相反。而对 于盆地水深均一的A组,河口在岸线各处分配的时 长大致相当。这个实验直观地表明盆地水深控制了 河道的活动性,即盆地水深越大,分流河道停留的时 间越长、越稳定。

1.2 盆地水深离岸变化时三角洲发育的水槽实验 模拟

Wang et al.^[31]在 Muto et al.^[41]的基础上,通过实验 进一步研究了三角洲由浅水区进积至深水区演化特征 的实验。在图3、4所示的实验中,将一个两侧由垂直 侧壁限制、以90°为顶角、半径约为60 cm 的扇形底板 放置于水中,使扇形底板淹没至水下1 cm,扇形底板边 缘则形成一个水下陡崖,形成一个扇形底板之上水深 为1 cm 的浅水区、扇形底板之外水深急剧增大的极深 水区,作为沉积盆地。携带沉积物的水流自水槽顶点 处供给,供给速率恒定(水供给速率 Q_{*}=51.4 cm³/s; 沉积物供给速率 Q_{*}=0.5 cm³/s),由此形成自浅水区向 深水区进积的三角洲(图3)。随着三角洲进积至扇形 底板边缘,其前缘水深将从1 cm 突变为40 cm(因三角洲无法继续进积,此时水深相当于"无穷大")。

图4所示的实验图像与图5所记录的河口相对 于三角洲顶点的方位角可以看出,当三角洲还处在 浅水区时,由于河口持续淤积,分流河道在整个盆地 范围内频繁摆动,表现得十分不稳定,当三角洲推进 至极深水区,河口不再发生沉积作用,三角洲停止进 积,分流河道立即变得稳定,表明分流河道中也不再 发生净沉积作用。同时,所有自物源供给而来的沉 积物尽数沉积于深水区,河流达到了"不冲不淤"、 沉积物过路不留的平衡状态(强制平衡,forced grade)^[39,42]。

Kim et al.^[43]也通过类似的实验得到了相似的结果。所不同的是,他们的实验中将深水区设置为"有限深度",而非三角洲无法进积的"无穷大"。当三角 洲进积至深水区时,发生了与Wang et al.^[31]的实验相同的现象:所有上游而来的沉积物尽数沉积于深水区,河口不发生沉积作用,分流河道从频繁摆动变得稳定。但随着实验的持续进行,深水区沉积物的堆积使得河口前方的水深逐渐变浅,先前的深水环境变为浅水环境,分流河道再次活跃起来。

水槽实验表明,盆地水深大小确实能控制三角 洲分流河道的活动性,其根本原因是水深控制了沉 积物水上水下的分配过程。盆地水深越浅,越多的 沉积物沉积于水上,河流表现得越不稳定;盆地水深 越大,越多的沉积物沉积于水下,河道越稳定,甚至 达到平衡。

2 平衡指数模型

2.1 平衡指数

盆地水深越大,河流越稳定,向深水区输送的沉积物越多、沉积于河道中的沉积物越少,实际上越接近平衡状态。理论上,直至水深达到无穷大,河流实现平衡。为了定量表达河流接近平衡的程度,Muto et al.^[41]提出了平衡指数(*G*_{indes})的概念。Wang et al.^[31]将其定义为单位时间内沉积物在陆上分配的体积与沉积物供给的总体积之比。平衡指数可以写作水深的函数,因此能够定量表达水深对三角洲陆上、水下沉积物分配的影响:

$$G_{\text{index}} = \frac{\mathrm{d}V_{\text{subarrial}}/\mathrm{d}t}{\mathrm{d}V_{\text{total}}/\mathrm{d}t} = \frac{1}{1 + \chi(h^*)} \tag{1}$$

式中:V_{subaerial}和V_{total}分别是沉积物分配在三角洲陆地

(a)实验A为均一水深,实验B中间1/3为浅水区、两侧为深水区,实验C中间1/3为深水区,两侧为浅水区;(b)三组实验结束后的图像;(c)三组实验中河口相 对于三角洲顶点的方位随时间的变化(据实验数据修改)

部分的体积和供三角洲建设的沉积物总体积;t是时间; $\chi(h^*)$ 是盆地水深 h^* 的函数(无量纲), h^* 是实际盆 地水深(h)与三角洲顶点海拔高度 $(\eta_{\alpha}, 三角洲平原$ 半径与坡度之积)的比值:

$$h^* = \frac{h}{\eta_{\alpha}} \tag{2a}$$

$$\eta_{\alpha} = \alpha x \tag{2b}$$

式中: α 为三角洲平原坡度(正切值), x 为三角洲平原 半径。

公式(1)右侧表达式的解释如下:单位时间内,将 沉积物分配在三角洲陆地部分的体积看作单位1,则 沉积物供给的总体积为1与沉积物分配在水下的体积 之和。沉积物有多少分配在水下,显然由水深决定。

容易理解,平衡指数是介于0和1之间的一个无 量纲的数。当G_{index}=0,代表了沉积物在陆地上没有 分配,即所有供给的沉积物都被搬运到水下,表明河 流达到了平衡状态,如图4所示的实验;或者冲积河 流消失,沉积物从物源区直接被搬运至水下,相当于 近岸水下扇的情形。如果G_{index}=1,表明所有自物源 区搬运而来的沉积物全部沉积于陆地上,自然界中 的冲积扇对应于这种情形。对于绝大多数三角洲, 0<G_{index}<1。

Fig.2 Design and results of three experiments with different basin water depths (see details in reference [41]) (a) in run A, water depth is uniform; in run B, water in the central one-third is shallower than at either side; in run C, water in the central one-third is deeper than at either side; (b) images of experiments at completion; (c) channel mouth trajectories relative to delta apex (modified according to experiment data)

图 3 三角洲由浅水区进积至极深水区的水槽实验设计(详细设计见文献[31]) (a)俯视图;(b)纵剖面图

Fig.3 Model of delta progradation from shallow to very deep water (see modeling details in reference [31]) (a) plan view; (b) profile in dip direction

图 4 三角洲由浅水区进积至极深水区的实验图像 在浅水区时河道频繁摆动迁移,当三角洲进积至极深水区,分流河道变得稳定。图中红色"曲线"为水平激光线 Fig.4 Model of a delta prograding from a shallow water region to very deep water region. The channel migrated frequently in the shallow water region, then stabilized after prograding to the very deep water. The red curves are horizontal laser beams

需要说明的是,公式(1)中的χ(h*)没有固定的形 式,受盆地形态等参数的控制,不同形态的盆地,χ (h*)具有不同的表达式。图2所示的实验A给出了一 个最为简单的盆地模型,陆地方向基底垂直、盆地的 坡度为水平,并在此基础上假设:(1)三角洲平原的 张角 λ 、三角洲平原的坡度 α 、三角洲前缘的坡度 β 在 三角洲发育过程中均保持不变;(2)三角洲岸线形态 可以近似为对称性的弧形(图6),可得针对这一类型

盆地的平衡指数:

$$G_{\rm index} = \frac{1}{1 + 2h^* + \alpha^* h^{*2}}$$
(3)

下超点

式中: $\alpha^* = \alpha/\beta$ 。公式(3)的推导过程见附1。很显然, 平衡指数与水深是一种反相关的关系(图7)。由公 式(3)可知,三角洲平原的相对坡度(0<a*<1)和相对 水深(h*,无量纲化)决定了平衡指数的大小。相较于 水深而言,三角洲平原的相对坡度对平衡指数的影

(a) 稳定海平面

Fig.6 A simple basin model for grade index

响较小。例如,α^{*}在其极限值0~1之间变化,引起的 平衡指数变化量也不超过0.1(图7)。

2.2 平衡指数与主要地貌动力学参数的关系

Muto et al.^[41]进一步证明,三角洲主要的地貌动 力学参数均可以通过平衡指数表达出来,包括三角 洲的进积速率R_{are}、加积速率R_{are}、河口迁移速率R_{min}、 河道决口周期 τ_A、河道满宽迁移时长(河道迁移与其 宽度相当的距离所需时间) τ_s、河口满岸线迁移时长 (河口从三角洲岸线的一侧迁移至另一侧所需时间) τ_r。如表1所示,上述地貌动力学参数的真实值,都 可以表达为各自在水深为0时的相应值(以下标*h*~0 表示),与平衡指数之积或之比(证明过程见附1)。

表1	平衡指数与三角洲地貌动力学参数的关系

Table 1 Relationship between grade index and morphodynamic parameters of the delta

地貌动力学参数		表达式			
实际值		=	与水深无关的数	×	与水深相关的数
进积速率	$R_{ m pro}$	=	$R_{ m proh\sim 0}$	×	$G_{\rm index}$
加积速率	$R_{_{ m agg}}$	=	$R_{ m aggh\sim 0}$	×	$G_{ m index}$
河口迁移速率	$R_{ m mig}$	=	$R_{{ m mig}h\sim 0}$	×	$G_{ m index}$
河道决口周期	$ au_{\mathrm{A}}$	=	$ au_{A h \sim 0}$	×	G_{index}^{-1}
河道满宽迁移时长	$ au_{ m s}$	=	$ au_{{}_{\mathrm{s}h\sim0}}$	×	G_{index}^{-1}
河口满岸线迁移时长	$ au_r$	=	$T_{rh=0}$	×	G_{index}^{-1}

注:常见的地貌动力学参数均可表达为一个"与水深无关的数"(水深为0时的对应值)和"与水深相关的数"(平衡指数 G_{index})之积(或之比)。下标 h~0 代表水深(h)为0时相应的地貌动力学参数。

在表1中,等式的中间列为各项水深为0时的地 貌动力学参数,其值大小与水深无关。另一方面,平 衡指数的大小却受水深控制。这样一来,水深对三 角洲地貌动力学参数的控制可以通过平衡指数定量 表达。根据表1,如果将地貌动力学参数以其水深为 0时的对应值做无量纲化处理,则平衡指数可视作无 量纲的地貌动力学参数:

 $R_{\text{pro}}^{*} = R_{\text{agg}}^{*} = R_{\text{mig}}^{*} = (\tau_{\text{A}}^{*})^{-1} = (\tau_{\text{s}}^{*})^{-1} = (\tau_{\text{r}}^{*})^{-1} = G_{\text{index}}$ (4) 式中:*表示无量纲参数。

对于给定的三角洲体系,在已知其沉积物供给 速率Q_s、平原坡度α、前缘坡度β、平原半径x、张角λ 等参数后,假想一个与其上述参数一致的冲积扇体 系,该冲积扇体系的进积速率、加积速率、河口迁移 速率、河道决口周期、河道满宽迁移时长、河口满岸 线迁移时长,即为该三角洲水深为0时的各项地貌动 力学参数(R_{proh-0} 、 R_{aggh-0} 、 R_{migh-0} 、 τ_{Ah-0} 、 τ_{sh-0} 、 τ_{rh-0}),并且 可以计算它们的理论值(推导过程见附1):

$$R_{\text{pro }h-0} = \frac{2Q_{\text{s}}}{\alpha\lambda x^2} \tag{5}$$

$$R_{\text{agg }h=0} = \frac{2Q_{\text{S}}}{\lambda x^2} \tag{6}$$

$$R_{\text{mig }h\sim0} = \Omega R_{\text{pro }h\sim0} = \alpha^{-1} \Omega R_{\text{agg }h\sim0}$$
(7)

$$\tau_{Ah-0} = \frac{\lambda h_c x^2}{2Q_s} \tag{8}$$

$$\tau_{sh=0} = \frac{\alpha B}{\Omega R_{agg h=0}} \tag{9}$$

$$\tau_{rh-0} = \frac{\alpha\beta\lambda x}{\Omega R_{agg h-0}} \tag{10}$$

式中: Ω 是表征 R_{pm} 与 R_{mig} 之间关系的系数,与冲积体系的粒径、植被覆盖情况等相关,无量纲; h_{e} 为分流河道的深度;B为分流河道的宽度。

900

0.4

0.2

2.3 平衡指数模型的实验验证

基于图6所示的简单模型, Wang et al.^[31]以盆地 水深为控制变量, 通过一系列水槽实验验证了平衡 指数模型。在六组实验中, 水深分别设置为1 cm、 2.5 cm、5 cm、10 cm、20 cm、+∞, 且在各组实验中保持 恒定, 其他外部参数包括沉积物组成、沉积物供给速 率、水供给速率, 以及与上述外部参数相关联的三角 洲平原的坡度α、三角洲前缘的坡度β等参数各组实 验均相同。

实验发现,随着水深的增加,三角洲分流河道的 活动性逐渐减弱,表现在:(1)分流河道迁移摆动的速 率、范围均随水深的增大而减小;(2)分流河道决口、 改道的频率随水深的增大而减小。如图8所示,六轮 实验中河口随时间的迁移直观地记录了上述过程。

0.2 0.4

52

0.4

0.2

Fig.8 Trajectories of channel mouth relative to delta apex from experiments with different basin water depths (a-f) runs 1-6 with water depths 1 cm, 2.5 cm, 5 cm, 10 cm, 20 cm, +∞, respectively. Run 6 (virtually infinite water depth) taken partly from Fig. 5 for 10 000 s onward (details from reference [31])

根据公式(2,3),各组的G_{index}均可根据实验参数 计算。计算结果显示,从实验1到实验5,随着水深 加大,G_{index}显著减小(图9),直至实验6,G_{index}=0,分流 河道达到(或接近)平衡状态,与实验过程一致。需 要指出的是,G_{index}除了与水深h、平原坡度α、前缘坡 度β等参数相关之外,还与三角洲的规模(平原半径 x)有关(公式2,3):水深恒定的情况下,平衡指数随 三角洲规模的增大而增加。因此,在Wang et al.^[31]开 展的实验中,为了提高对比性、更有效地讨论水深的 作用,各组三角洲演化至相当规模时(半径x 接近), 再进行G_{index}的对比更为合理。

另一方面,根据表1,对于特定的三角洲体系, 通过平衡指数可以计算一系列地貌动力学参数的 理论值。Wang et al.^[31]进一步根据实验参数,分别求 取了 $R_{\text{pro h-0}}$, $R_{\text{agg h-0}}$, $R_{\text{inig h-0}}$, τ_{Ah-0} 四项参数(公式5~8), 结合 G_{index} (图9),得到六组实验的理论进积速率 R_{pro} 、 加积速率 R_{agg} 、河口迁移速率 R_{mig} 、河道决口周期 $\tau_A^{[31]}$ 。如图10所示,进积速率 R_{pro} ,加积速率 R_{agg} 的理 论值与实测值基本吻合(图10a~b)。河口迁移速率 R_{mig} 、河道决口周期 τ_A 其理论值与实测值之间的出现 较大的误差(图10c~d),可能是因为:(1) R_{mig} 是通过 引入系数 Ω ,从 R_{pro} 近似而来,系数 Ω 依赖于经验,其 准确值难以确定;(2)实验设备引起的实验参数 误差。

3 平衡指数模型的应用

3.1 平衡指数模型的应用方法

平衡指数模型体现了盆地水深这个单一因素对 三角洲地貌动力学特征的"贡献",进而有助于解释 除水深之外的其他因素对三角洲地貌演变的影响, 如何将其应用于自然界值得进一步讨论。自然界中 的三角洲均有其特定的平衡指数,并可通过其所处 的盆地特征(基底坡度条件、水深条件等)、自身的特 征(沉积坡度条件、分流河道水深等)、物源条件(物 源供给速率)求取。

首先,选取适用的盆地几何模型,求解平衡指数 的具体表达式。如前所述,平衡指数没有统一的表达 形式,取决于盆地的几何形态。图6给出了一个简单 的模型,及基于此模型的平衡指数表达式(公式3)。

其次,求解平衡指数。如图6所示的模型,可知 盆地水深、三角洲平原和前缘的坡度、三角洲的半径 等是求取平衡指数的关键参数。对于现代沉积,可 以通过测量得到这些参数;对于古代沉积,则需要通 过开展古地理恢复获取这些参数。

第三,求解地貌动力学参数的理论值。在求解 平衡指数的基础上,进一步求取研究对象相关地貌 动力学参数在水深为0时的对应值(公式5~10),再 根据表1求取该研究对象地貌动力学参数的理论值。 完成此过程需要增加三个参数:沉积物供给速率Q_s、

图9 五组实验三角洲的平衡指数(图8所示的实验1~5)

该图仅适用于图6所示的模型。G_{index}除了与水深h、平原坡度α、前缘坡度β等参数相关之外,还与三角洲的规模(半径x)有关(公式2,3)。图中 五次实验的G_{index}值对应的三角洲半径分别为50.0~70.0 cm、40.0~70.0 cm、45.0~60.0 cm、50.0~60.0 cm、50.0~55.0 cm

for delta plain radius $x = 50.0 \sim 70.0$ cm, $40.0 \sim 70.0$ cm, $45.0 \sim 60.0$ cm, $50.0 \sim 60.0$ cm, and $50.0 \sim 55.0$ cm, respectively. The figure refers only to the model in Fig. 6, in which G_{index} is related to water depth h, delta plain slope a, delta front slope b, and delta plain radius x (Eqs. 2, 3)

(a)进积速率;(b)加积速率;(c)河道迁移速率;(d)河道决口周期。各参数的理论值通过表1和公式(5~8)求取。其中,公式7中的系数Ω,参考实验条件下的实测近 似值10^{41]}

(a) progradational rate; (b) aggradational rate; (c) channel migration rate; (d) period of channel avulsion. The theoretical morphodynamic parameters calculated from Table 1 and Eqs. (5)-(8). The value of Ω in Eq. (7) was approximately 10, based on experiment^[41]

三角洲张角λ、表征进积速率与河道迁移速率关系的 系数Ω。对于现代沉积体系,可通过观测获取;对于 古代沉积体系,可通过物源分析、平面沉积相分析或 参考经验值获取。

第四,对比理论值与实测值,分析盆地水深及水 深之外的其他因素对三角洲发育的影响。基于平衡 指数求取的理论地貌动力学参数仅反映水深的作 用。对于现代沉积体系,通过对比理论值和实测值, 可分析盆地水深以及除水深之外的其他因素对分流 河道活动性的影响,进而对分流河道的活动性开展 解释和预测。对于古沉积体系,可在合理假设及误 差允许范围内,解释和恢复古分流河道的活动特征。

以下介绍平衡指数在两个现代三角洲体系中的 应用。

3.2 平衡指数在自然界的应用实例

3.2.1 黄河三角洲

黄河三角洲前缘的水深很浅(相较于黄河三角 洲的规模),约10~15 m^[44]。黄河三角洲在过去三千 年至少发生了26次大型的决口^[45-46],1 500多次的洪 泛,非常不稳定。Wang *et al.*^[31]选取了近100多年来, 7次记录的自然决口事件(图11)^[46-47],分别通过测量 它们在水上及水下的坡度(分别作为α,β)、前缘的水 深(*h*),以及平原半径(*x*;各自的决口点相对于决口 时岸线的平均距离),参考图6所示的模型分别求取 了它们对应的平衡指数,7个朵体对应的平衡指数值 均在0.2左右(图12)^[31]。

根据平衡指数,结合下述参数,可以进一步根据 表1计算某些地貌动力学参数的理论值。现今黄河 的沉积物供给速率为4.2×10⁸ m³/yr^[48],分流河道的平 均厚度为2 m^[47]。经测量,7个朵体的平均张角为 0.83 π、平原的平均坡度为1.76×10⁴、平均半径为 41 km。根据上述参数,黄河三角洲进积速率、加积 速率、分流河道的决口周期的理论值应为340 m/yr、 6.0 cm/yr、33 yr。与实测值相比(表2),平衡指数模 型高估了进积速率和分流河道决口周期,低估了加 积速率。这表明,实际情况中有更多的沉积物作用 于三角洲加积,更少的沉积物作用于三角洲进积。

从表2可以看出,水深之外的其他因素影响了河 流的活动性。这些因素可以分为两类:(1)抑制河流 活动性的作用。例如,细粒黏性沉积物、植被等能够 有效地固定河流的堤岸,有利于河流的稳定;再如, 波浪、潮汐、沿岸流、异重流、异轻流等作用,能够有 效地疏浚河口区的沉积物,使更多的沉积物搬运至 蓄水盆地,从而也倾向于抑制河流的活动性。(2)加 剧河流活动性的作用。黄河三角洲分流河道的活动 性大于平衡指数模型的预测,如表2所示,黄河三角

Fig.10 Giude-based theoretical and measured values of main morphodynamic parameters

(a)黄河三角洲的地理位置;(b)1855—1930年间黄河三角洲的7次决口事件及当时的古岸线^[46-47];(c)黄河三角洲前缘的水深特征;详细的数据来源见文献[31]

Fig.11 Geographical context and sedimentary characteristics of the Yellow River delta

(a) satellite image; (b) map of Yellow River deltaic avulsions $1855-1930^{[46-47]}$; (c) bathymetric contours contiguous to Yellow River delta; experimental details in reference [31]

洲分流河道决口周期的预测值为实测值的4.7倍,表明加剧河流活动性的作用远比抑制河流活动性的作用显著。常见的加剧河流活动性的作用包括回水作用、洪水作用等。其中,回水作用(back water effect)

是指河流在流近河口的过程中,水深增加、流速变缓,因此搬运沉积物能力下降、泥沙沉积的现象^[49]。显然,回水作用的存在使更多沉积物沉积于陆上。 Ganti *et al.*^[47]曾单独讨论回水作用对黄河三角洲分流

表2 黄河三角洲基于平衡指数模型计算的与实测的进积速率、加积速率、河道决口周期对比

Table 2 Comparison of G_{index} -based theoretical values and recorded values of the progradation rate, aggradation

rate and avulsion timescale for the Yellow River delta

对比	进积速率R _{pro} [m/yr]	加积速率R _{agg} [cm/yr]	河道决口周期 $\tau_{A}[yr]$
基于G _{index} 的理论值	340	6.0	33
实际记录值	50~190	>7.5	7

河道活动性的影响,认为回水作用使黄河三角洲分 流河道的决口周期增加了约三倍。此外,季节性洪 水短时间内造成的径流量增加、环境变化造成的泥 沙含量增加、人为因素等,也是河道决口、改道的重 要因素^[50]。

3.2.2 台湾立雾溪三角洲

发育于中国台湾东海岸的立雾溪三角洲向海洋 方向仅3km水深急剧增加至400~500m(图13)。在 过去200年甚至上千年,其分流河道保持了稳定状 态。目前,立雾溪三角洲平原半径约为3.7km,其平 原和前缘的坡度分别约为0.0081、0.1~0.2。另外,假 定其前缘的最大水深为400~800m,参考图6所示的 模型计算*G*_{index}为0.012~0.024。相较于黄河三角洲, 立雾溪三角洲的平衡指数要小一个数量级,可以解 释立雾溪三角洲分流河道远稳定于黄河三角洲的 原因。

立雾溪三角洲现今的分流河道并非一直保持稳 定状态。在三角洲平原发育着三级河流阶地,从老 到新依次为T3(5 ka)、T2(2~3 ka)、T1(0.2~2 ka)(图 13b)^[51],表明在除了现今位置之外的其他位置有过河 道的活动。经测量,三级阶地(从老到新)的坡度(α) 分别为0.200、0.033、0.017,同时假设其他的参数,包 括三角洲平原的半径、三角洲前缘的坡度、三角洲前 缘的最大水深与现今相同,计算出三级阶地对应的 平衡指数分别为0.231~0.375、0.047~0.090、0.025~ 0.049(图 12)。自过去5000年以来,立雾溪三角洲 的平衡指数逐渐减小,表明其分流河道逐渐向平衡 状态接近,由不稳定变得越来越稳定,持续下切早期 的沉积。

考虑到台湾东海岸的相对海平面自6500年以 来几乎保持稳定,其分流河道趋向稳定、持续下切 的原因可能为:(1)三角洲前缘的深水环境;(2)物 源沉积物的浓度降低(Q_x/Q_w减小)或径流量增加(Q_w 增加)使得三角洲平原坡度减小(冲积体系的表面 坡度与沉积物浓度反相关、与径流量正相关^[52])。这 两个原因均使得立雾溪三角洲的相对水深处于或 逐渐趋于较大值的状态(无量纲水深*h*^{*})。可以推 测,如果立雾溪三角洲继续推进,在其他条件(物 源、海平面等)保持恒定的条件下,其分流河道将仍 可能在较长时间内保持稳定,因为其前缘面临的水 深急剧增加。

3.3 平衡指数模型的局限性

以上关于平衡指数的讨论,默认上游供给的沉积物全部沉积于河流—三角洲体系的顶积层和前积层。实际上河流—三角洲体系中的沉积物分配远比此复杂,盆地水深并不是影响沉积物分配的唯一因素。任何影响沉积物分配的外部作用都可能引起平衡指数模型与实际情况的偏差。

在下游端,除了本文讨论的水深影响沉积物分 配和河流活动性之外,还有其他因素影响这一过 程。上文提及的回水作用使更多的沉积物分配在 顶积层,平衡指数预测的分流河道活动性要小于实 际情况;与此相反,蓄水盆地的波浪、潮汐、沿岸流 能够有效地疏浚河口区沉积物,倾向于将沉积物搬 运远离三角洲体系,平衡指数预测的分流河道活动 性可能要大于实际情况。例如,对于冲积扇体系, 其平衡指数接近1,指示强河道活动性。但在 Clarke et al.^[53]开展的冲积扇水槽实验中,在冲积扇 的末端开挖了壕沟,上游供给的沉积物能够通过壕 沟流出冲积扇体系,冲积扇表面的河道能保持稳定 状态。Swenson^[54]也通过数值模拟证明了随着河口 区沉积物扩散能力增强,河道的沉积速率和决口周 期将分别加快和延长;再如,对于很多受潮汐影响 的三角洲,其分流河道表现得比较稳定[55-56]。这些均 表明河口区沉积物的疏散有利于河流的稳定性。此 外,本文讨论的平衡指数模型没有考虑海平面升降 的影响,海平面上升可能也是引起河流活动性增强 的一个因素[57-59]。

上游端,沉积物供给、沉积物性质、植被特征等 因素也影响河流的活动性。实验证实,增加沉积物 的供给速率、减小供给河流的水流量,均可引起河流 活动性增强^[60]。沉积物中的黏性组分(如泥质颗粒、 黏土矿物等)、三角洲平原植被的发育是降低河流活 动性的重要因素^[61-65]。此外,细粒沉积物含量的增

图 13 立雾溪三角洲所处的地理背景及沉积特征

(a)立雾溪三角洲的地理位置;(b)立雾溪三角洲平原的数字高程模型,显示发育三级阶地;(c,d)立雾溪三角洲前缘的水深特征。其中,根据(c)估算三角洲 前缘的最大水深为400 m(据 British Oceanographic Data Centre),根据(d)估算为800 m(据 Google Earth)。计算平衡指数时两个数据均做了参考。详细的数 据来源于文献[31]

Fig.13 Geographical context and sedimentary properties of Liwu River delta

(a) location of the Liwu River delta; (b) digital elevation model (DEM) showing three terrace landforms in ; (c) bathymetric data ahead of the delta from British Oceanographic Data Centre indicates maximum delta front depth of 400 m; (d) data from Google Earth indicates maximum depth of 800 m. Both values were used to calculate G_{index} . (See reference [31] for details)

多,可能在河口区形成异重流^[49],也可能对沉积物的 分配产生影响。

自然界三角洲的发育受上述条件的综合影响。 尽管平衡指数模型没有涵盖除水深之外其他因素对 三角洲沉积物分配和分流河道活动性的影响,通过 将其与仅由水深因素影响下的假设结果进行比较, 可以剔除水深因素的影响,从而间接帮助判别其他 因素在这一过程中的权重。

4 结论

(1)盆地水深控制着沉积物在三角洲水上部分 和水下部分分配的比例,进而控制分流河道的活动 性:盆地水深越浅,越多的沉积物沉积于水上,分流 河道表现得越不稳定,并发生频繁的迁移、摆动;盆 地水深越大,越多的沉积物沉积于水下,分流河道越 稳定;直至水深达到无穷大(沉积物无法在河口区堆 积),所有河流搬运而来的沉积物将尽数沉积于水 下,分流河道在理论上可达到既无净沉积作用,也无 净侵蚀作用、沉积物过路不留的平衡状态。

(2) 平衡指数模型可以定量表达盆地水深对三 角洲体系中沉积物的分配和分流河道活动性的控制 作用。平衡指数(*G*_{index})越接近于0,表明沉积物在陆 上的分配相对较少,河流因沉积速率较低而更稳定, 当*G*_{index}=0,表明河流搬运来的沉积物尽数沉积于岸 线之下,河流达到平衡状态,或者河流消失,三角洲 演变为水下扇。反之,当*G*_{index}越接近于1,表明沉积 物在陆上的分配相对较多,河流因沉积速率较高而 变得不稳定;当*G*_{index}=1,表明河流搬运来的沉积物尽 数沉积于水上,对应于冲积扇的情形。

(3) 三角洲主要的地貌动力学参数,如进积速 率、加积速率、河口迁移速率、河道决口周期等,均可 以通过平衡指数定量表达。一方面,平衡指数本身 可作为这些地貌动力学参数的标准值(无量纲的地 貌动力学参数);另一方面,这些地貌动力学参数的 真实值也可以通过平衡指数计算出来,并作为理论 参考值。自然界中的三角洲均有其特定的平衡指 数,可通过计算进一步恢复、解释、预测自然界中三 角洲的演化规律。

(4) 平衡指数模型体现的是盆地水深单一因素 对三角洲地貌动力学特征的"贡献"。通过计算自然 界中三角洲的平衡指数,进一步分析三角洲体系的 理论地貌动力学参数,并将其与实测值对比,有助于 解释除水深之外的其他因素对三角洲地貌演变的 影响。

致谢 感谢日本长崎大学 Tetsuji Muto 教授提供图2所示的实验资料。感谢自然资源部第一海洋研究所单新副研究员以及两位审稿专家、编辑部老师在审稿过程中提出的宝贵意见。

参考文献(References)

- Fisk H N, Kolb C R, McFarlan E, et al. Sedimentary framework of the modern Mississippi delta[J]. Journal of Sedimentary Research, 1954, 24(2): 76-99.
- Postma G. An analysis of the variation in delta architecture[J]. Terra Nova, 1990, 2(2): 124-130.
- [3] Porębski S J, Steel R J. Deltas and sea-level change[J]. Journal of Sedimentary Research, 2006, 76(3): 390-403.
- [4] Edmonds D A, Shaw J B, Mohrig D. Topset-dominated deltas: A new model for river delta stratigraphy[J]. Geology, 2011, 39(12): 1175-1178.
- [5] 吴胜和,岳大力,冯文杰,等.碎屑岩沉积构型研究若干进展

[J]. 古地理学报,2021,23(2):245-262. [Wu Shenghe, Yue Dali, Feng Wenjie, et al. Research progress of depositional architecture of clastic systems[J]. Journal of Palaeogeography, 2021, 23(2): 245-262.]

- [6] 孙龙德,方朝亮,李峰,等.油气勘探开发中的沉积学创新与挑战[J].石油勘探与开发,2015,42(2):129-136. [Sun Longde, Fang Chaoliang, Li Feng, et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development, 2015, 42(2): 129-136.]
- [7] 朱筱敏,钟大康,袁选俊,等.中国含油气盆地沉积地质学进展
 [J]. 石油勘探与开发,2016,43(5):820-829. [Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, et al. Development of sedimentary geology of petroliferous Basins in China[J]. Petroleum Exploration and Development, 2016, 43(5): 820-829.]
- [8] 吴胜和,徐振华,刘钊. 河控浅水三角洲沉积构型[J]. 古地理学报,2019,21(2):202-215. [Wu Shenghe, Xu Zhenhua, Liu Zhao. Depositional architecture of fluvial-dominated shoal water delta [J]. Journal of Palaeogeography, 2019, 21(2): 202-215.]
- [9] 尹太举,李宣玥,张昌民,等.现代浅水湖盆三角洲沉积砂体形态特征:以洞庭湖和鄱阳湖为例[J].石油天然气学报,2012,34 (10):1-7.[Yin Taiju, Li Xuanyue, Zhang Changmin, et al. Sandbody shape of modern shallow lake Basin delta sediments: By taking Dongting lake and Poyang lake for example[J]. Journal of Oil and Gas Technology, 2012, 34(10): 1-7.]
- [10] 孙廷彬,国殿斌,李中超,等. 鄱阳湖浅水三角洲分支河道分布 特征[J]. 岩性油气藏,2015,27(5):144-148. [Sun Tingbin, Guo Dianbin, Li Zhongchao, et al. Distribution characteristics of branch channel of shallow delta in Poyang Lake[J]. Lithologic Reservoirs, 2015, 27(5): 144-148.]
- [11] 张昌民,尹太举,朱永进,等.浅水三角洲沉积模式[J]. 沉积学报,2010,28(5):933-944. [Zhang Changmin, Yin Taiju, Zhu Yongjin, et al. Shallow-water deltas and models[J]. Acta Sedimentologica Sinica, 2010, 28(5):933-944.]
- [12] 袁选俊,周红英,张志杰,等. 坳陷湖盆大型浅水三角洲沉积 特征与生长模式[J]. 岩性油气藏,2021,33(1):1-11. [Yuan Xuanjun, Zhou Hongying, Zhang Zhijie, et al. Depositional features and growth pattern of large shallow-water deltas in Depression Basin[J]. Lithologic Reservoirs, 2021, 33(1): 1-11.]
- [13] 邹才能,赵文智,张兴阳,等.大型敞流坳陷湖盆浅水三角洲 与湖盆中心砂体的形成与分布[J].地质学报,2008,82(6): 813-825. [Zou Caineng, Zhaon Wenzhi, Zhang Xingyang, et al. Formation and distribution of shallow-water deltas and centralbasin sandbodies in large open depression lake basins[J]. Acta Geologica Sinica, 2008, 82(6): 813-825.]
- [14] 高志勇,周川闽,董文彤,等. 浅水三角洲动态生长过程模型 与有利砂体分布:以鄱阳湖赣江三角洲为例[J]. 现代地质, 2016, 30(2): 341-352. [Gao Zhiyong, Zhou Chuanmin, Dong Wentong, et al. Sedimentary processes, depositional model and sandbody prediction of lacustrine shallow water delta: A case study of Ganjiang river delta in Poyang lake[J]. Geoscience,

2016, 30(2): 341-352.]

- [15] 冯文杰,吴胜和,张可,等.曲流河浅水三角洲沉积过程与沉积模式探讨:沉积过程数值模拟与现代沉积分析的启示[J].地质学报,2017,91(9):2047-2064. [Feng Wenjie, Wu Shenghe, Zhang Ke, et al. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition[J]. Acta Geologica Sinica, 2017, 91 (9): 2047-2064.]
- [16] 唐勇,尹太举,覃建华,等.大型浅水扇三角洲发育的沉积物 理模拟实验研究[J]. 新疆石油地质,2017,38(3):253-263.
 [Tang Yong, Yin Taiju, Qin Jianhua, et al. Development of largescale shallow-water fan delta: Sedimentary laboratory simulation and experiments[J]. Xinjiang Petroleum Geology, 2017, 38(3): 253-263.]
- [17] 张新涛,周心怀,李建平,等. 敞流沉积环境中"浅水三角洲前缘砂体体系"研究[J]. 沉积学报,2014,32(2):260-269.
 [Zhang Xintao, Zhou Xinhuai, Li Jianping, et al. Unconfined flow deposits in front sandbodies of shallow water deltaic distributary systems[J]. Acta Sedimentologica Sinica, 2014, 32 (2): 260-269.]
- [18] 曾灿,尹太举,宋亚开.湖平面升降对浅水三角洲影响的沉积 数值模拟实验[J].地球科学,2017,42(11):2095-2104. [Zeng Can, Yin Taiju, Song Yakai. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta[J]. Earth Science, 2017, 42(11): 2095-2104.]
- [19] 白玉川,胡晓,徐海珏,等. 入湖浅水三角洲形成过程实验模 拟分析[J]. 水利学报,2018,49(5):549-560. [Bai Yuchuan, Hu Xiao, Xu Haijue, et al. Experimental analysis of the formation process of lacustrine shallow-water delta[J]. Journal of Hydraulic Engineering, 2018, 49(5): 549-560.]
- [20] 黄秀,刘可禹,邹才能,等. 鄱阳湖浅水三角洲沉积体系三维 定量正演模拟[J]. 地球科学:中国地质大学学报,2013,38(5): 1005-1013. [Huang Xiu, Liu Keyu, Zou Caineng, et al. Forward stratigraphic modelling of the depositional process and evolution of shallow water deltas in the Poyang lake, southern China[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(5): 1005-1013.]
- [21] 刘翰林,邱振,徐黎明,等.鄂尔多斯盆地陇东地区三叠系延 长组浅水三角洲砂体特征及厚层砂体成因[J]. 石油勘探与开 发,2021,48(1):106-117. [Liu Hanlin, Qiu Zhen, Xu Liming, et al. Distribution of shallow water delta sand bodies and the genesis of thick layer sand bodies of the Triassic Yanchang Formation, Longdong area, Ordos Basin[J]. Petroleum Exploration and Development, 2021, 48(1): 106-117.]
- [22] 孙靖,薛晶晶,吴海生,等.远源、细粒型浅水三角洲沉积特征 与演化:以准噶尔盆地腹部莫索湾地区八道湾组为例[J]. 沉积 学报, 2016, 34 (1): 129-136. [Sun Jing, Xue Jingjing, Wu Haisheng, et al. Distal fine-grain shallow-water delta sedimentary characteristics and evolution: A case from Badaowan Formation in the central Junggar Basin[J]. Acta Sedimentologica Sinica,

2016, 34(1): 129-136.]

- [23] 徐振华,吴胜和,刘钊,等. 浅水三角洲前缘指状砂坝构型特征:以渤海湾盆地渤海 BZ25 油田新近系明化镇组下段为例
 [J]. 石油勘探与开发,2019,46(2):322-333. [Xu Zhenhua, Wu Shenghe, Liu Zhao, et al. Sandbody architecture of the bar finger within shoal water delta front: Insights from the lower member of Minghuazhen Formation, Neogene, Bohai BZ25 oilfield, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2019, 46(2): 322-333.]
- [24] 房亚男,吴朝东,王熠哲,等.准噶尔盆地南缘中—下侏罗统 浅水三角洲类型及其构造和气候指示意义[J].中国科学:技术 科学,2016,46(7):737-756. [Fang Yanan, Wu Chaodong, Wang Yizhe, et al. Lower to Middle Jurassic shallow-water delta types in the southern Junggar Basin and implications for the tectonic and climate[J]. Scientia Sinica Technologica, 2016, 46(7): 737-756.]
- [25] 朱筱敏,邓秀芹,刘自亮,等.大型坳陷湖盆浅水辫状河三角 洲沉积特征及模式:以鄂尔多斯盆地陇东地区延长组为例[J]. 地学前缘,2013,20(2):19-28. [Zhu Xiaomin, Deng Xiuqin, Liu Ziliang, et al. Sedimentary characteristics and model of shallow braided delta in large-scale lacustrine: An example from Triassic Yanchang Formation in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 19-28.]
- [26] 朱筱敏,张义娜,杨俊生,等. 准噶尔盆地侏罗系辫状河三角 洲沉积特征[J]. 石油与天然气地质,2008,29(2):244-251.
 [Zhu Xiaomin, Zhang Yina, Yang Junsheng, et al. Sedimentary characteristics of the shallow Jurassic braided river delta, the Junggar Basin[J]. Oil & Gas Geology, 2008, 29(2): 244-251.]
- [27] 李渊,丁熊,王兴志,等.鄂尔多斯盆地延长组长8段浅水三角 洲砂体结构特征[J]. 天然气地球科学,2021,32(1):57-72. [Li Yuan, Ding Xiong, Wang Xingzhi, et al. Structural characteristics of sand bodies in shallow-water deltas in the Chang 8 member of Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(1): 57-72.]
- [28] 蔡全升,胡明毅,胡忠贵,等.退积型浅水三角洲沉积演化特 征及砂体展布规律:以松辽盆地北部临江地区下白垩统泉头 组四段为例[J].石油与天然气地质,2016,37(6):903-914.
 [Cai Quansheng, Hu Mingyi, Hu Zhonggui, et al. Sedimentary evolution and distribution of sand bodies of retrogradational shallow-water delta: A case study from 4th member of the Cretaceous Quantou Formation in the Lingjiang area, Songliao Basin [J]. Oil & Gas Geology, 2016, 37(6): 903-914.]
- [29] Carlson B, Piliouras A, Muto T, et al. Control of basin water depth on channel morphology and autogenic timescales in deltaic systems[J]. Journal of Sedimentary Research, 2018, 88(9): 1026-1039.
- [30] Olariu C, Bhattacharya J P. Terminal distributary channels and delta front architecture of river-dominated delta systems[J]. Journal of Sedimentary Research, 2006, 76(2): 212-233.
- [31] Wang J H, Muto T, Urata K, et al. Morphodynamics of river del-

tas in response to different basin water depths: An experimental examination of the grade index model[J]. Geophysical Research Letters, 2019, 46(10): 5265-5273.

- [32] 刁帆,文志刚,邹华耀,等.鄂尔多斯盆地陇东地区长8油层组 浅水三角洲沉积特征[J]. 地球科学:中国地质大学学报,2013, 38(6):1289-1298. [Diao Fan, Wen Zhigang, Zou Huayao, et al. Sedimentary characteristics of shallow-water deltas in Chang 8 oil-bearing interval in eastern Gansu, Ordos Basin[J]. Earth Science: Journal of China University of Geosciences, 2013, 38(6): 1289-1298.]
- [33] 李彦泽,王志坤,商琳,等.小湖盆浅水三角洲沉积特征及其等时格架划分方案:以南堡4-3区东二段为例[J]. 沉积学报,2019,37(5):1079-1086. [Li Yanze, Wang Zhikun, Shang Lin, et al. Study on sedimentary characteristics of shallow-water deltas and isochronous stratigraphic framework: An example of Ed₂ of 4-3 zone of Nanpu oilfield[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1079-1086.]
- [34] 秦祎,朱世发,朱筱敏,等.东营凹陷南缓坡浅水三角洲沉积 特征与源—汇过程[J].地球科学,2017,42(11):2081-2094.
 [Qin Yi, Zhu Shifa, Zhu Xiaomin, et al. Shallow water delta sedimentation and source-to-sink process in the south slope belt, Dongying Sag[J]. Earth Science, 2017, 42(11): 2081-2094.]
- [35] 陈诚,朱怡翔,石军辉,等. 断陷湖盆浅水三角洲的形成过程 与发育模式:以苏丹 Muglad 盆地 Fula 凹陷 Jake 地区 AG 组为 例[J]. 石油学报,2016,37(12):1508-1517. [Chen Cheng, Zhu Yixiang, Shi Junhui, et al. The forming process and development pattern of shallow water delta in fault depression lacustrian basin: A case study of AG Formation in the Jake area in Fula Sag, Muglad Basin, Sudan[J]. Acta Petrolei Sinica, 2016, 37 (12): 1508-1517.]
- [36] 尹太举,张昌民,朱永进,等. 叠覆式三角洲:一种特殊的浅水 三角洲[J]. 地质学报,2014,88(2):263-272. [Yin Taiju, Zhang Changmin, Zhu Yongjin, et al. Overlapping delta: A new special type of delta formed by overlapped lobes[J]. Acta Geologica Sinica, 2014, 88(2): 263-272.]
- [37] 刘自亮,沈芳,朱筱敏,等.浅水三角洲研究进展与陆相湖盆 实例分析[J]. 石油与天然气地质,2015,36(4):596-604. [Liu Ziliang, Shen Fang, Zhu Xiaomin, et al. Progress of shallowwater delta research and a case study of continental lake basin [J]. Oil & Gas Geology, 2015, 36(4): 596-604.]
- [38] 朱永进,张昌民,尹太举. 叠覆式浅水三角洲沉积特征与沉积 模拟[J]. 地质科技情报,2013,32(3):59-65. [Zhu Yongjin, Zhang Changmin, Yin Taiju. Characteristics of superimposed shallow-lacustrine delta and its experimental simulation[J]. Geological Science and Technology Information, 2013, 32(3): 59-65.]
- [39] Muto T, Furubayashi R, Tomer A, et al. Planform evolution of deltas with graded alluvial topsets: Insights from three-dimensional tank experiments, geometric considerations and field applications[J]. Sedimentology, 2016, 63(7): 2158-2189.

- [40] Jerolmack D J, Mohrig D. Conditions for branching in depositional rivers[J]. Geology, 2007, 35(5): 463-466.
- [41] Muto T, Miao H, Parker G. How do deltas respond as they prograde over bathymetry that varies in the transverse direction?: Results of tank experiments[C]//Proceedings of the 7th IAHR symposium of river, coastal and estuarine morphodynamics. Beijing: Tsinghua University Press, 2011: 563-577.
- [42] 王俊辉,鲜本忠.冲积河流平衡的再认识[J].古地理学报, 2023,25(5):1011-1031. [Wang Junhui, Xian Benzhong. Revisiting the concept of alluvial river grade[J]. Journal of Palaeogeography, 2023, 25(5): 1011-1031.]
- [43] Kim Y, Kim W, Cheong D, et al. Piping coarse-grained sediment to a deep water fan through a shelf-edge delta bypass channel: Tank experiments[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2279-2291.
- [44] Jiang C, Pan S Q, Chen S L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: Causes and environmental implications[J]. Geomorphology, 2017, 293: 93-107.
- [45] Saito Y, Wei H L, Zhou Y Q, et al. Delta progradation and Chenier Formation in the Huanghe (Yellow River) Delta, China[J]. Journal of Asian Earth Sciences, 2000, 18(4): 489-497.
- [46] 庞家珍,司书亨.黄河河口演变:I.近代历史变迁[J].海洋与 湖沼,1979,10(2):136-141. [Pang Jiazhen, Si Shuheng. The estuary changes of Huanghe river. I. Changes in modern time [J]. Oceanologia et Limnologia Sinica, 1979, 10(2): 136-141.]
- [47] Ganti V, Chu Z X, Lamb M P, et al. Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China[J]. Geophysical Research Letters, 2014, 41(22): 7882-7890.
- [48] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21.
- [49] Lamb M P, Nittrouer J A, Mohrig D, et al. Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio-deltaic morphodynamics[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1): F01002.
- [50] 王先彦,于洋.试论河流地貌学的新进展和趋势[J]. 地质科技 通报,2024,43(1):150-159. [Wang Xianyan, Yu Yang. Progress in fluvial geomorphology and trend: A brief review[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 150-159.]
- [51] 林朝棨. 台湾省通志稿,土地志·地理篇[M]. 台北市:台湾省 文献委员会,1957:423-424. [Lin Chaoqi. The Taiwan topography[M]. Taiwan: Literature Committee of Taiwan, 1957: 1-423.]
- [52] Paola C, Heller R L, Angevine C L. The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory[J]. Basin Research, 1992, 4(2): 73-90.
- [53] Clarke L, Quine T A, Nicholas A. An experimental investigation of autogenic behaviour during alluvial fan evolution[J]. Geomor-

phology, 2010, 115(3/4): 278-285.

- [54] Swenson J B. Relative importance of fluvial input and wave energy in controlling the timescale for distributary-channel avulsion[J]. Geophysical Research Letters, 2005, 32(23): L23404.
- [55] Geleynse N, Storms J E A, Walstra D J R, et al. Controls on river delta formation; insights from numerical modeling[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 217-226.
- [56] Gugliotta M, Saito Y. Matching trends in channel width, sinuosity, and depth along the fluvial to marine transition zone of tidedominated river deltas: The need for a revision of depositional and hydraulic models[J]. Earth-Science Reviews, 2019, 191: 93-113.
- [57] Muto T, Wang J H. Autogenic shrinkage and channel destabilization of an overexpanded downstream alluvial system under steady rise of relative sea level: An experimental study[J]. Earth and Planetary Science Letters, 2024, 637: 118722.
- [58] Chadwick A J, Steele S, Silvestre J, et al. Effect of sea-level change on river avulsions and stratigraphy for an experimental lowland delta[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(7): e2021JF006422.
- [59] Martin J, Sheets B, Paola C, et al. Influence of steady base-level rise on channel mobility, shoreline migration, and scaling properties of a cohesive experimental delta[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F3): F03017, doi: 10.1029/

2008JF001142.

- [60] Powell E J, Kim W, Muto T. Varying discharge controls on timescales of autogenic storage and release processes in fluvio-deltaic environments: Tank experiments[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F2): F02011, doi: 10.1029/ 2011JF002097.
- [61] Hoyal D C J D, Sheets B A. Morphodynamic evolution of experimental cohesive deltas[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F2): F02009, doi: 10.1029/ 2007JF000882.
- [62] van Dijk W M, van de Lageweg W I, Kleinhans M G. Formation of a cohesive floodplain in a dynamic experimental meandering river[J]. Earth Surface Processes and Landforms, 2013, 38(13): 1550-1565.
- [63] Lauzon R, Murray A B. Comparing the cohesive effects of mud and vegetation on delta evolution[J]. Geophysical Research Letters, 2018, 45(19): 10437-10445.
- [64] Tal M, Paola C. Effects of vegetation on channel morphodynamics: Results and insights from laboratory experiments[J]. Earth Surface Processes and Landforms, 2010, 35(9): 1014-1028.
- [65] Straub K M, Paola C, Mohrig D, et al. Compensational stacking of channelized sedimentary deposits[J]. Journal of Sedimentary Research, 2009, 79(9): 673-688.

Principal Differences Between Deep-water and Shallow-water Delta Landforms: An interpretation by the Grade Index Model

WANG Junhui^{1,2}, ZHANG Wei^{1,2}, LI Li^{1,2}, XIAN Benzhong^{1,2}, ZHOU Yuan^{1,2}

1. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China 2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China

Abstract: [Objective] Recent research suggests that the basin water depth governs the morphodynamics of deltas that formed at the basin margin, because water depth affects the amount of subaerial and subaqueous sediment that are deposited. Shallow-water deltas contain more sediment than deep-water deltas in the subaerial region. As a result, aggradation of distributary channels takes place more rapidly in shallow-water deltas, making the channel more active in terms of migration and avulsion. The grade index (G_{index}) model is proposed to quantitively illustrate this process. [Methods] This study elaborates the origin, theoretical modeling, experimental validation and application of the grade index model, and discusses its limitations. In this context, grade refers to the state of a river stream in which sedimentary material is all transported by the river flow without net deposition or erosion taking place. The grade index is defined as the ratio of the volume of sediment allocated subaerially to the total volume of sediment input in per unit time. By this definition, G_{index} is a dimensionless number between 0 (no deposition subaerially) and 1 (complete deposition subaerially). [Results] Theoretical analyses confirm a negative relationship between G_{index} and water depth. It is also related to the geometry of the delta (e.g., delta plain radius, topset slope and foreset slope). In basins with deeper water, $G_{index} \rightarrow 0$, which means that decreasing volumes of sediment are deposited subaerially per unit time, forming a more stable channel that approaches the equilibrium condition or 'state of grade' of the alluvial river, when neither erosion nor deposition takes place. Conversely, $G_{\text{index}} \rightarrow 1$ for deltas developed in shallower water basins, and the delta plain becomes increasingly unstable. The value of G_{index} reflects basic morphodynamic parameters of the delta (e.g., rates of progradation, aggradation and channel migration, and the timescale of channel avulsion). Each of these parameters can be calculated as the product or quotient between G_{index} and their counterparts obtained with negligibly small basin water depth, while the former is determined by the delta's geometrical parameters and basin water depth and the latter is determined by the delta's geometrical parameters and total sediment supply rate. This means that for a particular deltaic system with specific geometrical parameters, sediment supply rate and basin water depth, it has theoretical values for the grade index and geomorphodynamic parameters, both of which can be calculated. This speculation was verified by tank experiment. The G_{index} model is derived from the global mass balance of the deltaic system. Local and/or tentative depositional, erosional and dispersal processes (e.g., backwater effect and coastal processes including waves, tides and longshore currents, as well as effects unrelated to the depositional system (vegetation and/or anthropogenic processes)) were not considered. [Conclusions] The grade index model isolates the effect of basin water depth from other variables in describing delta morphodynamics, and reveals the principal differences between the formation of deep-water and shallow-water delta landforms. It also goes some way toward explaining the influence of factors other than water depth. The model has the potential for general application to modern alluvial-deltaic systems. Its application to ancient systems has yet to be explored.

Key words: Delta; water depth; morphodynamics; grade index; tank experiment