文章编号:1000-0550(2025)03-0813-14

浊流沿程特征的一维数值模拟研究

赖孟涛^{1,2},王俊辉^{1,2},张春明³

1.油气资源与工程全国重点实验室,北京 102249
2.中国石油大学(北京)地球科学学院,北京 102249
3.中国石油勘探开发研究院石油天然气地质研究所,北京 100083

摘 要【目的】通过对浊流流动开展数值模拟研究,分析控制因素对浊流流动特征和沉积特性的影响及规律。【方法】基于层平 均深度模型构建了浊流的数值计算模型,通过设定不同粒径颗粒浓度、入流厚度与入流速度等初始条件,模拟并分析了由4种粒 径悬浮沉积物驱动下的海底浊流在坡度为3%的流动过程和沉积特性。【结果】模拟结果显示浊流的沿程特征表现为:(1)在浊流 厚度方面,浊流演化的初期由于对环境水的夹带开始变厚,但随着流动过程中沉降作用的发生又逐渐变薄,总体上,在相同初始 流速下,粗颗粒沉积物含量越高浊流厚度越大。(2)在流速方面,浊流演化表现为三个阶段,分别是加速阶段、匀速阶段和减速阶 段,在相同初始厚度、相同沉积物浓度的条件下,细颗粒沉积物含量越高的浊流越稳定(即可以保持长时间的匀速运动流动);在 相同沉积物组成和浓度条件下,厚度越大的浊流越稳定。(3)在沉积特征方面,浊流近源端的沉积物堆积多,沉积物主要堆积在 中轴处,在中轴处后,沉积物厚度单调递减。厚度大、流速高的浊流,沉积速率更小,但是其沉积数量更多。【结论】所应用的方法 适用于现场尺度的浊流的研究,未来有望在自然界得到应用。

关键词 浊流;数值模拟;水动力特性;沉积特征

第一作者简介 赖孟涛,男,1998年生,硕士研究生,浊流数值模拟,E-mail: leslielai09@163.com

通信作者 王俊辉,男,副教授,博士生导师,沉积学与实验地层学,E-mail: wangjunhui@cup.edu.cn

中图分类号 P512.2 文献标志码 A

DOI: 10.14027/j.issn.1000-0550.2024.057 CSTR: 32268.14/j.cjxb.62-1038.2024.057

0 引言

浊流是指深水环境中间歇性出现的含沙密度 流,浊流内的悬浮沙浓度与周围的水体产生的密度 差为其提供了前进的驱动力^[1]。海底浊流是将沉积 物从大陆架输送到深海的主要机制,可以短时间内 将陆源物质输送到上百千米以外的深海盆地中,形 成富含陆源有机物和海底油气资源的海底扇^[2]。故 研究浊流的水动力学机制和沉积特性对深海沉积物 的输运过程、海洋的地形演变、油气能源的勘探都有 十分重要的价值和意义。

1885年Forel¹³首先观察到了泥沙浓度很高的底 流从罗纳河进入到日内瓦湖的现象,他由此提出了 浊流这一概念。到19世纪初,大量海底峡谷和平坦 的深海平原的发现,针对浊流的研究越来越多。 Daly^[4]、Cant et al.^[5]逐渐将浊流与海底峡谷成因、沉积 扇的沉积模型联系在一起,取得了一系列成果。Xu et al.^[6]捕获到了高精度的浊流流速剖面数据,并对浊 流的动力学性质和沉积特性进行了深入研究。但是 浊流具有很强的偶发性和破坏性,现场观测难以对 其研究,所以目前对浊流的研究主要是通过物理模 拟和数值模拟的方式开展。

自 Garcia et al.^[7-8]通过水槽实验对浊流的流动过 程和水动力学特性进行研究,得到了水夹带系数与 理查德森数的趋势函数。国内外学者陆续对浓度、 流速、坡度等因素对浊流运动和沉积特征剖面的影 响进行了一系列研究,推动了浊流研究的进一步发 展。如余斌等^[9]利用坡度为3°的倾斜水槽进行了一

收稿日期:2023-11-09;修回日期:2024-04-18;录用日期:2024-05-17;网络出版日期:2024-05-17

基金项目:国家自然科学基金项目(42172108);中国石油大学(北京)科研基金项目(2462020BJRC002,2462022YXZZ010)[Foundation: National Natural Science Foundation of China, No. 42172108; Science Foundation of China University of Petroleum, Beijing, No. 2462020BJRC002, 2462022YXZZ010]

系列的低浓度浊流和高浓度浊流的实验研究,提出 在水槽宽度、泥沙浓度一定的条件下,异重流的初期 潜入点弗劳德数(Fr)与头部流速成正比。但由于水 槽实验受实验尺度及人力物力的限制,随着计算机 技术的进步,浊流的数值模拟研究迅速蓬勃发展。 Huang et al.¹⁰¹、EI-Gawad et al.¹⁰¹、Ottolenghi et al.¹⁰²等 学者相继对浊流的流速及浓度、粒径、坡度等开展了 数值模拟研究,取得了一系列浊流理论。Hoffmann et al.¹³³开展了浊流数值模拟研究,模拟结果是由二维 直接数值模拟通过一系列侵蚀和沉积浊流形成的沉 积物波。郭彦英等¹⁰⁴模拟了不同坡度下浊流的流动 与沉积过程,发现坡度对浊流的沉积位置起到至关 重要的作用。

从上述的研究概述可知,对于浊流流动过程及 沉积特性的研究基本是对一种控制因素开展研究。 但是在实际中,浊流受到多种因素一起控制其流动 与沉积情况。因此,研究受多种控制因素(如不同粒 径浓度、不同初始流速、不同初始流动厚度等因素) 影响下浊流流动与沉积情况,对预测和研究浊流的 水动力学机制和沉积特性,反演浊流沉积环境及勘 探深海油气资源和油气储层具有重要的现实意义与 参考价值。本文通过建立多个粒度等级的非均匀粒 度分布的流动与沉积模型,通过控制变量对浊流的 流动与沉积过程进行了数值模拟,探讨浊流在流动 过程中受不同参数影响下的流动特性和沉积特征。

1 数值模拟模型的建立

1.1 流动过程

在本文中采用Kostic et al.¹¹⁵¹提出的层平均深度 模型。Nakao et al.¹¹⁶¹对其进行拓展,构建了多个粒度 等级的非均匀粒度分布的流动与沉积模型(图1)。 该模型描述了浊流在流动过程中,其顶部与环境水 体以及其底部与底床之间的相互关系。浊流与周围 的水体会存在一些交互行为。在浊流与环境水之间 的相互关系方面,浊流在流动过程之中,一方面会卷 吸、夹带周围环境水体,另一方面,浊流中的悬浮颗 粒会向环境水体中进行扩散,形成一种从浊流到环 境水体的颗粒扩散过程。在浊流与底床相互关系方 面,浊流在运动中其内部颗粒因自身性质不同,会发 生悬浮或沉降。在这个过程中,浊流一方面会将底 床中的沉积物起动、夹带进浊流之中,由这些可能参 与浊流流动的沉积物构成的表层称之为活性层,另 一方面,浊流中的悬浮物也会通过沉降作用沉积在 底床上。颗粒沉降与启动过程是不断进行的,且是 相互影响、相互制约的:沉降颗粒可以增加底床的厚 度和粗糙度,影响底床的阻力,从而影响颗粒的启 动;被启动的颗粒又可以增加浊流的颗粒浓度,影响 颗粒的沉降过程。

1.2 控制方程

基于 Kostic *et al.*¹⁵¹提出的层平均深度模型,考虑 了不同粒级沉积物的搬运和沉积,将沉积物离散为多 个粒度类别。根据流体的质量守恒、流体的动量守 恒、悬浮沉积物质量守恒的方程(公式1~3)、底床沉积 物质量守恒的 Exner 方程(公式4)对模型进行约束。 此外,为了计算各粒级底床沉积物的卷吸率(公式3、4 中的*e_s*),通过活性层中各粒级沉积物的连续性方程 (公式5)对模型进行控制。这些关系表示如下:

$$\frac{\partial H}{\partial t} + \frac{\partial UH}{\partial x} = e_{\rm w}U \tag{1}$$

$$\frac{\partial UH}{\partial t} + \frac{\partial U^2 H}{\partial x} = RgC_T HS - \frac{Rg}{2} \frac{\partial C_T H^2}{\partial x} - u_*^2 \quad (2)$$

$$\frac{\partial C_i H}{\partial t} + \frac{\partial C_i U H}{\partial x} = w_i \Big(e_{si} F_i - r_0 C_i \Big)$$
(3)

$$\frac{\partial \eta_i}{\partial t} = \frac{w_i}{1 - \lambda_p} \left(r_0 C_i - e_{si} F_i \right) \tag{4}$$

$$\frac{\partial F_i}{\partial t} + \frac{F_i}{L_a} \frac{\partial \eta_T}{\partial t} = \frac{w_i}{L_a (1 - \lambda_p)} \left(r_0 C_i - e_{si} F_i \right)$$
(5)

式中: $x \pi t$ 分别为流向坐标和时间(本文主要考虑浊 流沿程, 即x方向随时间t的变化特征, 为一维模拟)。 $H \pi U$ 分别为浊流的厚度和层平均流速; C_i 为第i粒 级悬浮沉积物浓度层平均体积浓度; C_r 表示悬浮沉 积物的层平均总浓度($C_r = \sum C_i$);g代表重力加速 度; c_i 是摩擦系数;S是坡度;R为沉积物的有效容重 数($R = (\rho_s - \rho_w)/\rho_w, \rho_s$ 是浊流密度, ρ_w 是环境水密度); w_i 为第i粒级沉积物颗粒的沉降速度; λ_p 为底床沉积物 的孔隙度; η_i 为第i粒级底床沉积物的单位面积体积 (厚度或高度); η_r 是所有 η_i 的总和($\eta_r = \sum \eta_i$); L_a 为 活性层厚度; F_i 为活性层中第i种粒度类别的体积分 数; $e_{si}, e_w \pi r_0$ 代表第i粒级沉积物进入浊流的夹带系 数、浊流对环境水的夹带系数、近床悬浮泥沙浓度与 悬浮泥沙层平均浓度之比。

1.3 闭合方程

使用上述五个守恒方程所构建的数值模型研究 浊流的沿程特征,其关键是求解五个变量 $H_{x}C_{i},U_{x}$ η_{i},F_{i} 在x方向随时间的变化。在此之前,需要确定

(a)浊流流动示意图;(b)底床物质交换示意图;(c)活性层物质交换示意图;H.浊流厚度;U.浊流流速;C,各粒度级平均体积浓度;r_o近床悬浮泥沙浓度与 层平均值之比;w,各粒度级沉积物颗粒的下落速度;e_w.水流对环境水的夹带系数;e_w.各粒级沉积物进入浊流的夹带系数;F_i.活性层中各粒级的体积分 数; η ,各粒度级底床沉积物的高度; λ_{p} ,河床泥沙的孔隙度

Fig.1 Forward model diagram of unstable turbidity flow (modified from reference [16])

(a) turbidity current flow schematic; (b) bed material exchange schematic; (c) active layer material exchange schematic; H is the turbidity current thickness; U is the turbidity current velocity; C_i is the average volume concentration for each particle size class; r_0 is the ratio of suspended sediment concentration near the bed relative to the average layer concentration; w_i is the velocity of falling sediment particles in each particle size class; e_w is the entrainment coefficient of the water flow to the ambient water; e_{si} is the entrainment coefficient of sediments of each particle size entering the turbidity current; F_i is the volume fraction of each particle fraction in the active layer; η_i is the thickness of sediment for each grain size class in the bed; λ_o is the porosity of sediment in the bed

 e_{w} 、 w_{i} 、 u_{*} 、 e_{s} 、 r_{0} 、 L_{a} 、 c_{f} 等参数。本文中,近床悬浮泥沙浓 度与层平均值之比 r_{0} 、活性层厚度 L_{a} 、摩擦系数 c_{f} 均可 使用经验常数,分别为1.5、0.003 m、0.004。 e_{w} 、 w_{i} 、 u_{*} 、 e_{s} 可根据前人研究的经验公式来闭合控制方程。

1.3.1 浊流对环境水的夹带系数 e_w

浊流对环境水的夹带系数 e_w使用 Fukushima et al.^[17]提出的经验公式,计算如下:

$$e_{\rm w} = \frac{0.001\,53}{0.020\,4 + R_i} \tag{6}$$

式中:R_i为整体理查森数,定义为:

$$R_i = \frac{R_{\rm g}C_T H}{U^2} \tag{7}$$

1.3.2 颗粒沉降速度wi

使用了Dietrich¹¹⁸提出的关系式用来计算粒径D_i的颗粒沉降速度w_i,其表示为:

$$w_i = R_{fi} \sqrt{RgD_i} \tag{8}$$

式中: R_i 是粒径为 D_i 的颗粒的无量纲沉降速率:

$$R_{fi} = \exp\left(-b_1 + b_2 \log\left(Re_{pi}\right) - b_3 \left(\log\left(Re_{pi}\right)\right)^2 - b_4 \left(\log\left(Re_{pi}\right)\right)^3 + b_5 \left(\log\left(Re_{pi}\right)\right)^4$$
(9)

式中: b_1 、 b_2 、 b_3 、 b_4 和 b_5 均可取经验常数,分别为2.891 394、0.952 96、0.056 835、0.000 245 和 0.000 245。 Re_{pi} 是粒径为 D_i 的颗粒对应的颗粒雷诺数:

$$Re_{pi} = \frac{\sqrt{RgD_i} D_i}{v}$$
(10)

1.3.3 剪切速度u*

剪切速率u*可用下式求取:

$$u_* = \sqrt{c_{\rm f}} U \tag{11}$$

式中:c_f为摩擦系数,设置为0.004。

1.3.4 浊流对沉积物的夹带系数e。

使用Garcia et al.¹⁹⁹的经验关系式计算沉积物的 卷吸系数 e_s:

$$e_{s} = \frac{aZ^{5}}{1 + \left(\frac{a}{0.5}\right)Z^{5}}$$
(12)

式中:a为常数,可取1.3×107。Z代表沉积特性值:

$$Z = \alpha_1 \frac{u_*}{w_p} R e_p^{\alpha_2} \tag{13}$$

式中:如果 $Re_p \leq 2.36$,常数 α_1 和 α_2 分别为0.586和1.23;如果 $Re_p > 2.36$, α_1 和 α_2 分别为1.0和0.6。

2 数值模拟实验设计

2.1 初始条件

到目前为止,世界上有两处详细观测、记录的深海浊流系统,分别是位于美国的 Monterey Canyon^[20]以及加拿大的 Squamish Prodelta^[21],其中 Monterey 峡谷目前研究最深入,资料最翔实,且具有实时监控数据。故本次模拟选取美国的 Monterey Canyon 作为模拟参考对象进行数值模拟研究。Xu *et al.*^[6]在该峡谷测量海底峡谷上方 170 m处速度超过了 1.5 m/s,将这段作为参考区段设置 300 m 的模拟长度(x方向)。Monterey 峡谷顶部坡度约为 2°,底部接近大陆架坡折处坡度小于 1.5°^[20],据此实验坡度设置为 3%(约 1.72°)。根据松散砂质沉积物(初始)孔隙度介于 30%~60%,将实验底床沉积物的孔隙度 λ_p 设置为 40%。环境水密度设置为 1 000.0 kg/m³,摩擦系数 c_r 和近床浓度与层平均值的比率 r_0 均假定为常数,其中

 $c_{\rm f}$ 设置为0.004, $r_{\rm 0}$ 设置为1.5。此外,活性层 $L_{\rm a}$ 的 厚度设定为常数0.003 m^[22],重力加速度g设置为 9.812 m/s²。

为了保证计算的精度和模拟的准确,按照5m的 尺寸将模型进行网格划分,采用有限差分法对网格 进行离散,用来计算模拟区域的流动和沉积情况。 浊流的正演模型在数值求解时需要设置上游和下游 边界条件,在本论文之中,上游采用了Dirichlet边界 条件,其中在计算域上边界处的所有流量参数,包括 初始浊流厚度 H_0 、初始浊流流速 U_0 、每个粒度的初始 体积浓度 C_{x00} 下游边界为Neumann边界条件,在该 条件下,所有参数设置为与上游方向下边界相邻的 网格相同的值。除上游边界外,所有流量参数均初 始化为零。

2.2 实验设计

根据对 Monterey 峡谷浊流观测实验中获得的沉积物捕获样品分析,发现浊流成分主要为砂、粉砂和黏土^[23],其中浊流沉积物的体积浓度在 10⁶~10³量级^[24]。据此实验设置了 0.75 mm、0.3 mm、0.05 mm、0.001 mm 四种不同粒径,分别代表粗砂、细砂、粉砂、黏土,其初始体积浓度分别为C₁、C₂、C₃、C₄,并按照表 1进行了参数设置。

本次浊流数值模拟共设置了7个实验,记为 Run1~Run7。其中,Run1为对照试验。Run1、Run2、 Run3三组实验重点研究不同颗粒的浓度对浊流的沉 积特性和水动力特性影响;Run1、Run4、Run5三组实 验重点研究不同初始浊流厚度对浊流的沉积特性和 水动力特性影响;Run1、Run6、Run7三组实验重点研 究不同初始流速对浊流的沉积特性和水动力特性 影响。

3 模拟结果与分析

将表1设置的7组初始模拟参数输入编写的模 拟程序中,可以得到7个实验结果,每个实验结果可 以得到10项数据,分别是每个时间点和每个空间节 点处各节点浊流的流速、厚度、4种粒度浓度及4种 粒度沉积物厚度的值,以及相应的剖面图像。

3.1 不同颗粒浓度对浊流的影响

浊流是由其体内的悬浮沙浓度与周围的水体产 生的密度差为其提供了源源不断前进的驱动力,所 以浊流内部的颗粒浓度与浊流的流速密切相关。流 速剖面(图2)显示流速从低值向高值过渡,然后保持

表1 数值模拟参数设置 Table 1 Numerical simulation parameters								
Run1	1.0	0.7	0.15	0.04	1.2	1.6	3	500
Run2	0.5	0.7	0.15	0.20	1.2	1.6	3	500
Run3	0.2	0.7	0.15	0.45	1.2	1.6	3	500
Run4	1.0	0.7	0.15	0.04	1.1	1.6	3	500
Run5	1.0	0.7	0.15	0.04	0.9	1.6	3	500
Run6	1.0	0.7	0.15	0.04	1.2	1.5	3	500
Bun7	1.0	0.7	0.15	0.04	1.2	0.6	3	500

定值一段距离,最后又由高值向低值转变的过程,这 展现出浊流在运动过程中流速出现三个阶段,分别 是加速阶段、匀速阶段和减速阶段。其原因可能是 浊流刚进入环境流体由于密度差开始处于加速状 态;在不断流动的过程之中夹带周围环境流体和底 床中的沉积颗粒,使得浊流的结构相对稳定,保持匀 速运动;但在浊流流动过程中颗粒的沉降及与周围 水体、底床发生摩擦作用,使得浊流能量不断消耗, 处于减速状态,流速开始减小。所含颗粒浓度不同, 流速三个变化阶段的特征和变化也不相同,如流速 到达最大流速的位置不同,加速、匀速、减速阶段持 续的时间和距离不同。

取Run1、Run2、Run3流速剖面的第80s、120s、 160 s 沿程数据(图 3)。在3个时间, Run3(黏土浓度 为0.45%)的沿程速度均大于其他两组,Run2(黏土 浓度为0.20%)的沿程速度均大于Run1(黏土浓度为 0.04%)。说明悬浮物颗粒浓度对浊流流速影响显 著,细颗粒浓度大的浊流流速会较大。模拟结果与 Gladstone et al.^[25]得到关于不同粒径浓度对浊流流速 至关重要的结论一致。其原因可能是在流动过程 中,浊流会与周围环境水体接触并且发生摩擦作用, 产生环形涡流现象,导致沉积物呈现自悬浮状态^[26], 但浊流内颗粒粒径大小不同,所以不同粒径颗粒展 现出不同的状态,细颗粒由于粒径小,可以在浊流之 中保持悬浮的状态,而粗颗粒由于粒径过大,不易保 持悬浮状态,流动过程中逐渐沉积在底床。所以细 颗粒浓度高的浊流能量损失较小,可以保持浊流的 相对稳定,速度较大且变幅较小;粗颗粒浓度高的浊 流能量损失较大,从而速度较小且变幅较大。

浊流厚度在沿程上出现由小变大到从大至小的 变化趋势(图4)。取Run1、Run2、Run3浊流厚度剖 面的第80s、120s、160s沿程数据(图5)。在沿程上, 所含颗粒浓度不同,浊流厚度大小及变化出现差异。 在沿程3个时间点均发现,Run1(粗砂浓度为1%)的 浊流厚度均大于Run2(粗砂浓度为0.5%)和Run3(粗 砂浓度为0.2%),Run2(粗砂浓度为0.5%)的浊流厚 度均大于Run3(粗砂浓度为0.2%)。以上结果说明 颗粒浓度影响浊流厚度,在初始浊流流速、厚度相同 的情况下,所含粗颗粒多的浊流厚度会更大。粗颗 粒在运动过程之中会受到更大的摩擦作用,形成更 大的涡流,从而可以卷吸更多周围的环境水与沉积 物,所以粗颗粒浓度较大的浊流厚度也会较大。

浊流在流动过程中,各悬浮颗粒浓度均在不同 程度地减少,逐渐沉积到底床上,不同粒径悬浮颗粒 展现出不同的沉积特性(图6)。粗砂、细砂浓度衰减 得很快,粗砂在200 m处浓度要趋近于0,细砂在 250 m 处要趋近于0; 而粉砂和黏土的浓度则衰减缓 慢,即使在远处也保留在浊流之中。取Run1、Run2、 Run3模拟结束时沿程沉积物厚度数据,发现沉积物 主要堆积在中轴处,并且粗颗粒浓度高的沉积物厚 度较大(图7)。粗颗粒悬浮沉积物因不能保持悬浮 状态快速沉降,而细颗粒沉积物则可以保持悬浮状 态一直在浊流中进行远距离搬运,所以粗颗粒浓度 大的浊流沉积物厚度也会较大。Paull^[27]对 Monterey 峡谷进行观测和对沉积物采样时发现,沉积物厚度 在靠近峡谷中轴处最大,并且进行粒度分析发现,中 轴处主要以粗砂为主,从中轴处往后,含砂量逐渐降 低,本次模拟结果与其一致。

图 3 Run1、Run2、Run3 在 80 s、120 s、160 s 时沿程速度分布图 Fig.3 Velocity distributions of Run1, Run2 and Run3 at 80 s, 120 s and 160 s

Fig.4 Turbidity current thickness along the profile

图 5 Run1、Run2、Run3 在 80 s、120 s、160 s 时沿程浊流厚度分布图 Fig.5 Turbidity current thicknesses for Run1, Run2 and Run3 at 80 s, 120 s and 160 s

3.2 不同初始浊流厚度对浊流的影响

浊流厚度影响浊流流速和沉积演化。浊流流速 依然出现三个阶段变化,但初始浊流厚度不同,浊流 流速在三个阶段的特征和变化也不同,如到达最大 流速的位置等,且随着流动时间的增加,流速差距越 来越大(图8)。

取 Run1、Run4、Run5 中 80 s、120 s、160 s 沿程流 速数据(图9)。在浊流流动过程中,Run1(H₀=1.2 m) 的沿程流速均大于 Run4(H₀=1.1 m)及 Run5(H₀= 0.9 m)的沿程流速,Run4(H₀=1.1 m)的沿程流速均大 于 Run5(H₀=0.9 m)的沿程流速。浊流流速与初始浊 流厚度有明显的相关性,初始的浊流厚度越大,浊流 沿程流速越大。其原因可能是初始浊流厚度越大其 体积也越大,与环境水的接触与夹带越多,在流动之 中可以给浊流源源不绝地提供动力且维持稳定状 态,促使浊流流速不断增大。但流速不会无限地增 大,由于浊流内悬浮颗粒物沉降同时与环境流体和 底床发生摩擦,从而减小浊流的动能,使其达到一个 流速值保持匀速运动下去。而厚度更小的浊流在流 动过程之中对环境水的夹带不够且自身悬浮物沉 降,难以维持浊流的稳定,在短时间加速之后立即开 始减速。

Fig.7 Sediment distribution of Run1, Run2 and Run3 at 500 s

取 Run1、Run4、Run5 中模拟结束时沿程4种颗 粒浓度数据(图10)。发现浊流厚度与浊流内部结构 息息相关,在浊流的流动过程中,其体内各悬浮颗粒 的浓度均会衰减,粗颗粒浓度衰减得最快,细颗粒衰 减的缓慢。初始浊流厚度会影响浊流内部悬浮泥沙 的衰减程度,初始浊流厚度大的,其体内浊流各悬浮 颗粒浓度衰减得慢,初始浊流厚度更小的,体内悬浮 颗粒衰减程度更大。初始浊流厚度越大,浊流的体 积也会越大,导致浊流的质量增加,并且在不断的运 动过程之中可以夹带更多的环境流体,从而增加浊 流的动能,使得浊流将更多颗粒保持在悬浮状态,所 以各颗粒浓度衰减得更慢。

Run1、Run4、Run5模拟结束时沿程沉积物厚度 分布图显示(图11),初始浊流厚度更大的浊流沿程 的沉积物厚度均大于初始浊流厚度更小的浊流,沉 积物沉降在靠近物源的地方,沉积物主要堆积在中 轴处,从中轴处往后高程逐渐降低,沉积物厚度逐渐 变薄。沉积物厚度与浊流初始厚度关系密切,初始

Fig.8 Velocity profiles of turbidity flow

浊流厚度较大,沉积物的厚度也会较大。初始浊流 厚度大,其体积也因此更大,可能会卷吸周围的悬浮 沉积物,随着浊流流动能量的降低,在沿程进行沉 降,所以初始浊流厚度较大的沉积物厚度也较大。

3.3 不同初始流速对浊流的影响

浊流流速是浊流强度的重要标志及特征,初始 浊流流速对浊流演化及沉积具有重要的控制作用。 不同的入流速度,浊流厚度都呈现出相同的变化趋 势,均为由小变大再从大至小,但浊流厚度变化具有 明显差异(图12)。Run1(U₀=1.6 m/s)沿程浊流厚度均 大于Run6(U₀=1.5 m/s)、Run7(U₀=0.6 m/s),Run6(U₀= 1.5 m/s)沿程浊流厚度均大于Run7(U₀=0.6 m/s)。 表明初始入流速度更大时,浊流厚度会更大,并且浊 流厚度变大的距离也更大,同一时间能到达更远的 地方。原因可能是:一方面,初始入流速度更大的浊 流其卷吸能力也更强,对周围的环境水进行卷吸及 对底床的沉积物进行夹带,使得其浊流厚度更大;另 一方面,浊流流速大,其悬浮颗粒的运动能量也会增

图 9 Run1、Run4、Run5 在 80 s、120 s、160 s 时沿程速度分布图 9 Turbidity current thickness distributions of Run1, Run4 and Run5 at 80 s, 120 s and 160 s

Fig.10 Concentration distribution of each particle at the end of Run1, Run4 and Run5 simulations

加,这会导致颗粒之间的相互碰撞和摩擦增加,使得 颗粒之间的黏着力增强,浊流中的颗粒就会更容易 互相黏合形成团簇,导致整个浊流的厚度增加。

初始浊流流速影响浊流内部悬浮泥沙的衰减 程度,初始浊流流速大的,其体内浊流各悬浮颗粒 浓度衰减得慢,初始浊流厚度更小的,体内和悬浮 颗粒衰减程度更大(图13)。颗粒沉降速度是关于 浊流流速的函数,浊流流速与颗粒沉降速率呈负相 关,所以浊流流速越大,颗粒沉降速率越小,各颗粒 可以在浊流中保持更久时间的悬浮状态,浓度衰减 得更缓慢。

沉积物主要沉降在靠近物源的地方,中轴处堆 积的沉积物最多,远离中轴处,沉积物的厚度逐渐减 小,但初始入流速度沉积物的厚度和分布也有所差 异。初始入流速度更大的浊流搬运能力强,可以携 带更多的沉积物,可以将粗颗粒物质搬运到更远的 地方进行沉积;相反,初始入流速度小的浊流,搬运 能力也更小,可以携带的沉积物也较少,在与底床及

图 11 Run1、Run4、Run5 模拟结束沿程沉积物厚度分布图 Fig.11 Sediment thickness distribution at the end of Run1, Run4 and Run5

不同的水团摩擦力的作用下,通常浊流会快速地消 亡,仅能将细颗粒(如粉砂、黏土)搬运至较近的地方 沉积(图14)。浊积层厚度较大的层位是由强度较大 的浊流所造成的,在沉积物供给稳定的情况下浊流 的流速对其搬运能力有着显著影响。因此,浊流的 流速直接影响着其搬运能力和沉积物的种类。

4 结论

(1) 在浊流运动过程中,悬浮物颗粒的大小及浓 度会影响浊流的流速大小及沉积物厚度。细颗粒含 量多的浊流流速会较大,且可以保持长时间匀速运 动,但粗颗粒含量多的浊流厚度和沉积物厚度会较 大。粗颗粒会快速沉积,集中在中轴附近,而细颗粒 出现在沉积物的中部或者顶部,沉积速度相对缓慢。 (2)初始浊流厚度与浊流流速具有很强的相关 性,厚度更大的浊流在流动过程中,流速往往较大 且可保持更长时间的匀速运动。浊流厚度会出现 由小到大再从大变小的变化趋势。厚度较大的初 始浊流其体内各颗粒的衰减程度更小,沉积物厚度 更大。

(3) 以高速入流的浊流,浊流厚度会更大,悬浮 沉积物的浓度衰减更慢,沉积物厚度更大。以高速 入流的浊流能够搬运更多的沉积物进行沉积,如砾 石、砂、粉砂等物质;相反,以低速入流时,浊流仅可 以搬运粒度较小的物质,如粉砂、黏土等物质。沉 积物出现砂层层数数量增加,厚度变小又变大的特 征时,可能是发生了浊流流速增大、浊流增强的 事件。

Fig.13 Concentration distribution of each particle at the end of Run1, Run6 and Run7 simulations

参考文献(References)

- [1] 徐景平.海底浊流研究百年回顾[J].中国海洋大学学报,2014, 44(10):98-105. [Xu Jingping. Turbidity current research in the past century: An overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98-105.]
- [2] Talling P J, Paull C K, Piper D J W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows[J]. Earth-Science Reviews, 2013, 125: 244-287.
- [3] Forel F-A. Les ravins sous-lacustre des fleuves glaciaires[J].

Bulletin de la Société vaudoise des ingénieurs et des architectes, 1885, 101:725-728.

- [4] Daly R A. Origin of submarine canyons[J]. American Journal of Science, 1936, S5-31(186): 401-420.
- [5] Cant D J, Walker R G. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada[J]. Sedimentology, 1978, 25(5): 625-648.
- [6] Xu J P, Noble M A, Rosenfeld L K. In-situ measurements of velocity structure within turbidity currents[J]. Geophysical Research Letters, 2004, 31(9): L09311.
- [7] Garcia M, Parker G. Entrainment of bed sediment into suspension

第3期

[J]. Journal of Hydraulic Engineering, 1991,117(4): 414-435.

- [8] Garcia M H. Hydraulic jumps in sediment-driven bottom currents[J]. Journal of Hydraulic Engineering, 1993, 119(10): 1094-1117.
- [9] 余斌. 浊流和泥石流的异重流初期潜入点的实验研究[J]. 水科 学进展, 2008, 19(1):27-35. [Yu Bin. Experimental study on the incipient plunging point of stratified flow of turbidity currents and debris flows[J]. Advances in Water Science, 2008, 19(1): 27-35.]
- [10] Huang H Q, Imran J, Pirmez C. Numerical model of turbidity currents with a deforming bottom boundary[J]. Journal of Hydraulic Engineering, 2005, 131(4): 283-293.
- [11] El-Gawad S A, Cantelli A, Pirmez C, et al. Three-dimensional numerical simulation of turbidity currents in a submarine channel on the seafloor of the Niger Delta slope[J]. Journal of Geophysical Research, 2012, 117(C5): C05026.
- [12] Ottolenghi L, Adduce C, Roman F, et al. Analysis of the flow in gravity currents propagating up a slope[J]. Ocean Modelling, 2017, 115: 1-13.
- [13] Hoffmann G, Nasr-Azadani M, Meiburg E. Sediment wave Formation caused by erosional and depositional turbidity currents: A numerical investigation[J]. Procedia IUTAM, 2015, 15: 26-33.
- [14] 郭彦英,黄河清.海底浊流在坡道转换处的流动及沉积的数 值模拟[J]. 沉积学报,2013,31(6):994-1000. [Guo Yanying, Huang Heqing. Numerical simulation of the flow and deposition of turbidity currents with different slope changes[J]. Acta Sedimentologica Sinica, 2013, 31(6): 994-1000.]
- [15] Kostic S, Parker G. Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling[J]. Journal of Hydraulic Research, 2003, 41(2): 127-140.
- [16] Nakao K, Naruse H, Tokuhashi S. Inverse analysis to reconstruct hydraulic conditions of non-steady turbidity currents: Application to an ancient Turbidite of the Kiyosumi Formation of the Awa Group, Boso Peninsula, Central Japan[EB/OL]. (2020-10-11). https://doi.org/10.21203/rs.3.rs-94481/v1.
- [17] Fukushima Y, Parker G, Pantin H M. Prediction of ignitive turbidity currents in Scripps Submarine Canyon[J]. Marine Geology,

1985, 67(1/2): 55-81.

- [18] Dietrich W E. Settling velocity of natural particles[J]. Water Resources Research, 1982, 18(6): 1615-1626.
- [19] Garcia M, Parker G. Experiments on the entrainment of sediment into suspension by a dense bottom current[J]. Journal of Geophysical Research: Oceans, 1993, 98(C3): 4793-4807.
- [20] Paull C K, Ussler III W, Caress D W, et al. Origins of large crescent-shaped bedforms within the axial channel of Monterey canyon, offshore California[J]. Geosphere, 2010, 6(6): 755-774.
- [21] Hughes Clarke J E. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature Communications, 2016, 7: 11896.
- [22] Arai K, Naruse H, Miura R, et al. Tsunami-generated turbidity current of the 2011 Tohoku-Oki earthquake[J]. Geology, 2013, 41(11): 1195-1198.
- [23] 徐景平.科学与技术并进:近20年来海底峡谷浊流观测的成 就和挑战[J].地球科学进展,2013,28(5):552-558. [Xu Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552-558.]
- [24] 唐盟. 加拿大东南部大西洋大陆坡浊流沉积环境与沉积过程 特征:以Halibut Canyon 为例[D]. 南京:南京大学,2020:3-251. [Tang Meng. Turbidity process and sedimentary environment of South-East Canada (Atlantic) continental slope: Case study of Halibut Canyon[D]. Nanjing: Nanjing University, 2020: 3-251.]
- [25] Gladstone C, Phillips J C, Sparks R S J. Experiments on bidisperse, constant-volume gravity currents: Propagation and sediment deposition[J]. Sedimentology, 1998, 45(5): 833-843.
- [26] Middleton G V. Submarine fans and channels[M]//Fairbridge R W, Bourgeois. Encyclopedia of sedimentology. Berlin, Heidelberg: Springer, 1978: 1149-1154.
- [27] Paull C K, Mitts P, Ussler III W, et al. Trail of sand in Upper Monterey Canyon: Offshore California[J]. Geological Society of America Bulletin, 2005, 117(9/10): 1134-1145.

One-dimensional Numerical Simulation of Turbidity Flow Characteristics in the Flow Direction

LAI MengTao^{1,2}, WANG JunHui^{1,2}, ZHANG ChunMing³

1. National Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China

2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China

3. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

Abstract: [Objective] To perform a numerical simulation of turbidity flow to demonstrate the effects of factors influencing the turbidity flow and sediment deposition. [Methods] A numerical calculation model of turbidity current was constructed based on the average layer thickness model. Initial particle size concentrations, inflow thickness and inflow velocity were modeled to assess the flow and deposition processes for suspended particles in a submarine turbidity current. Four particle sizes and a 3% flow-channel slope were simulated and the findings were analyzed. [Results] (1) In terms of thickness, the turbidity current began to thicken at the initial stage of its evolution as environmental water was entrained, then gradually thinned as sediment was introduced. (2) The flow velocity was observed to be in three stages: acceleration, uniform velocity, and deceleration. For the same initial thickness and sediment concentration, a higher content of fine-grained sediment resulted in a more stable turbidity current (i.e., the current maintained a uniform flow for longer). For similar sediment composition and concentration conditions, a thicker turbidity current was more stable. (3) The greatest accumulation of sediments occurred close to the source of the turbidity current and mainly at the central axis of the channel, decreasing monotonically with distance from the central axis. The deposition rate in a very thick, rapid turbidity current is smaller, but the overall quantity of deposited material is greater.[Conclusions] These results demonstrate that the method described is suitable for the study of field-scale turbidity currents and its future application is expected for naturally occurring turbidity currents.

Key words: turbidity; numerical simulation; hydrodynamic characteristics; deposition characteristics