文章编号:1000-0550(2025)03-0782-15

砂质辫状河沉积演化机制与沉积构型模式

——定量化水槽沉积模拟实验研究

冯文杰¹,曹荆楚¹,张昌民¹,钱其豪²,张涛³,雷涛⁴,周志成¹ 1.长江大学地球科学学院,武汉 430100 2.中国石油勘探开发研究院,北京 100083 3.中国石油大港油田采油四厂,天津 300280 4.中石化华北油田分公司勘探开发研究院,郑州 450006

摘 要【目的】砂质辫状河沉积过程中,辫状水道频繁、快速且持续变迁,导致辫状河沉积体内部最终保存的心滩和辫状水道 均遭受严重侵蚀改造,表现为形态破碎、规模偏小且定量关系模型不明,传统的砂质辫状河沉积模式无法有效指导地下储层表 征。为明确砂质辫状河沉积演化机制,构建可靠的沉积构型模式与定量规模关系模型,采用水槽实验开展沉积过程模拟、测绘 及定量化解剖。【方法】通过水槽实验,在固定边界条件限制下,模拟砂质辫状河形成与演化过程,利用激光扫描仪按固定时间间 隔获取实验地貌形态数据并精确重构模拟辫状河三维沉积构型模型,进一步开展沉积演化机制分析、沉积构型解剖及构型单元 定量规模与关系模型构建。【结果】(1)砂质辫状河沉积初期,沉积物顺流发生底床搬运并形成初始心滩,分散水流受阻汇集成水 道并进一步形成朵状初始心滩,随后辫状水道改造初始心滩并逐步形成稳定的水道网络与心滩格局;(2)在辫状河形成后,辫状 水道与心滩持续协同演化,主要存在三种演化机制,包括辫状水道侧积主导心滩侧向增生,辫状水道废弃充填并与心滩叠合、辫 状水道汇水冲刷导致下游心滩重塑;(3)模拟过程中,心滩通常在1~6个模拟期次内形成并持续生长至最大规模,随后在3~8个 模拟期次内遭受连续侵蚀而规模减小,最终仅约36%的区域得以保存;(4)模拟结束后,辫状河沉积体内部以辫状水道沉积为 主,其占比约57.9%,可分为复杂叠切水道、下切水道、孤立水道,心滩多遭受水道侵蚀改造,其规模较小、形态破碎;(5)最终保存 的沉积体内部,辫状水道平均宽厚比为14.1,其内部增生体宽厚比为13.7,心滩宽厚比为19.8,其内部增生体宽厚比为25.4。 【结论】该研究明确了砂质辫状河沉积体在辫状水道网络持续、高强度侵蚀改造后形成的复杂沉积构型样式,建立了内部构型单 元定量规模与关系模型,为地下储层表征提供了更贴近地质实际的定量化沉积构型模式。

关键词 砂质辫状河;定量化水槽实验;沉积演化;沉积构型;定量规模与关系模型

第一作者简介 冯文杰,男,1988年生,副教授,硕士生导师,油气田开发地质学、储层沉积学,E-mail: fwj1017@yangtzeu.edu.cn **中图分类号** P512.2 **文献标志码** A

DOI: 10.14027/j.issn.1000-0550.2024.068 CSTR: 32268.14/j.cjxb.62-1038.2024.068

0 引言

砂质辫状河是一种常见的河流类型,广泛见于 太古代至今的所有地层记录中^[1:3],可形成大规模、宽 带状、泛连通的优质储集体。在我国鄂尔多斯盆地、 准噶尔盆地、塔里木盆地、松辽盆地、渤海湾盆地及 国外多个含油气盆地内均发现了大规模砂质辫状河 成因的油气储层^[4:1]。大量开发实践表明:砂质辫状 河储层虽然规模大且整体泛连通^[12],但其内部构型特 征复杂、非均质性强,存在多个层次、多种类型的高 渗条带和夹层^[13-15],导致砂质辫状河储层在开发初期 往往产量较高,但进入注水开发阶段后普遍存在见 水快、含水率上升快、开发措施调整效果差等问题, 到开发后期,含水率高的同时,大量的剩余油气仍富 集于储层内部,严重制约了砂质辫状河储层高效开 发^[16-21]。基于现代沉积与露头观察解剖、水槽模拟、 沉积数值模拟等技术的研究已经表明,辫状水道的 频繁迁移活动驱动心滩的反复形成、改造、重塑过 程,导致辫状河沉积构型十分复杂,并体现为心滩形 态与分布样式多样,心滩内部增生体形态各异且复

收稿日期:2024-04-12;修回日期:2024-05-14;录用日期:2024-06-05;网络出版日期:2024-06-05

基金项目:国家自然科学基金项目(41802123,42130813)[Foundation: National Natural Science Foundation of China, No. 41802123, 42130813]

合关系复杂、辫状水道不同程度侵蚀心滩并形成复 杂的空间结构样式^[10,13,22-33]。大量的研究表明,砂质辫 状河储层内部不同级次的构型界面与构型单元控制 的储层内部单元叠切关系、连通性及储层质量差异 是主导地下流体运动特性与剩余油富集的关键因素 之一^[16-20]。因此,充分考虑砂质辫状河形成与演化过 程的复杂性并建立贴近地下储层实际的沉积构型模 式对于深化辫状河沉积学理论并指导地下储层构型 解剖与剩余油气资源挖潜具有重要意义。

长期以来基于现代沉积观察与探地雷达浅层探 测研究及水槽与沉积数值模拟研究主要聚焦于砂质 辫状河表层沉积地貌特征与沉积样式研究,构建了 较为丰富的沉积模式并获得了大量的构型单元定量 规模数据[24,26,34-40]。然而,由于砂质辫状河水道网络的 高频活动和强烈的侵蚀、改造、沉积作用,最终保存 在地层记录中的辫状河沉积构型及其构型单元规模 与定量关系明显有别于尚处于活跃状态的现代辫状 河浅表部位。差异主要体现为活跃沉积最终保存程 度较低(<50%)、心滩保存比例较低、沉积构型要素 保存不完整且多以侵蚀改造后的残余沉积存 在130,41-43]。因而,从现代沉积中观察到的心滩、辫状水 道难以完整地保存在地下储层中,基于活跃辫状河 浅表沉积特征或沉积模拟过程中的地貌特征构建的 沉积模式及获取的定量规模信息难以有效地指导地 下储层表征。相比于现代沉积及模拟沉积地貌,野 外露头更接近地下储层,然而由于露头往往出露条 件有限、系统性差且形成背景复杂,难以充分支撑储 层构型模式与定量规模研究[13,25,44-48]。

为了建立贴近地下砂质辫状河储层的构型模式, 并建立构型单元定量规模与关系模型,需从长期演化 过程分析的角度出发,明确演化过程中辫状水道与心 滩的迁移演化模式与侵蚀改造及保存规律,据此建立 构型模式,并提取已保存在沉积记录中的沉积构型要 素规模以构建可靠的定量规模与相关模型。本文参 考现代辫状河沉积背景条件设定水槽沉积模拟装置 和边界条件并开展砂质辫状河水槽模拟实验研究。 实验过程中,采用三维激光扫描仪按固定时间间隔获 取实验沉积地貌数据,并据此重构三维数字化沉积构 型模型,以分析实验辫状河长期连续演化过程及其最 终保存的沉积构型特征及定量规模。通过细致的沉 积演化过程分析,明确了砂质辫状河形成过程、水道 与心滩协同演化模式、沉积构型模式及构型单元定量 规模,为地下砂质辫状河储层表征提供可靠的模式指 导和定量规模与定量关系约束。

1 实验设计

1.1 实验装置

为模拟砂质辫状河的形成与演化过程,设置了 一套水槽模拟装置(图1),该装置由砂质底床、循环 供水泵、螺杆式定速供砂器、水位控制边界、储水槽、 三维激光扫描仪及延时摄影相机构成。砂质底床长 8.5 m,宽1.1 m,以天然河砂铺设并轻微压实,提供了 足够的模拟空间(图2),底床高差5 cm。模拟过程 中,循环供水泵从底床末端水槽抽水并泵送到水砂 混合漏斗中,与螺杆式定速供砂器提供的砂混合,从 水槽底床左侧边界进入砂质底床发生沉积。水位控 制边界限定了砂质底床末端水位高低,以保证模拟 过程中不因水位波动影响实验辫状河沉积。为了获 取沉积演化过程中的沉积地貌数据,在多个站点利 用三维激光扫描仪扫测实验辫状河地貌,获取高精 度、高密度三维点云数据。延时摄影相机从多个视 角以1s为间隔拍摄实验辫状河图像。

Fig.1 Diagram of the experiment facility

图2 模拟实验初始底形(流向自左向右)

Fig.2 Initial bedform for the experiment (water flows from the left to right boundary)

Table 1 Experimental boundary conditions

参数类型	参数值	参数类型	参数值
水槽长度	8.5 m	水槽长宽	8.0 m×1.1 m
水流流速	0.1 m/s	水流流量	1.5 L/s
底床坡度	0.05 m/8.5 m (比降约5.9)	砂质沉积物来源	天然河砂
主要砂质成分	中砂、细砂	沉积物粒度中值	0.75 mm
供砂量	3 g/s	监测方式	激光扫描
单期时长	1 h	模拟步数/期次数	48步/期

1.2 边界条件

参考现代辫状河沉积背景条件,设定了模拟边 界条件(表1)。底床成分与模拟中供应的砂质均为 天然河砂,其粒度中值为0.75 mm,两者成分相似保证 模拟过程中不因砂质沉积物成分与粒度对河流沉积 演化造成干扰。砂质底床坡降为0.05 m, 坡长8.5 m, 坡度约为5.9,经多轮预实验测试,该坡度适于砂质 辫状河模拟。在模拟过程中,供水量保持在1.5 L/s, 实验实测水流速度大致为0.1 m/s,经预实验测试后, 将供砂率设定为3 g/s,以确保模拟过程中上游边界 处不发生砂质堆积或异常下切。为保证激光扫描仪 扫测精度,以1h为间隔开展实验,每个期次结束后 排干底床内的明水,开展多站联合激光扫描,记录沉 积过程中的地貌特征及其演变过程。本实验共进行 48个周期的模拟,在平缓的砂质底床上再现了一条 典型砂质辫状河逐步形成并持续演化的过程。从实 验时长与稳定边界条件的前提出发,本实验模拟的 辫状河可类比自然界冲积平原上的单一辫状河,在 地下储层中可对应单砂层内部的辫状河单砂体储 层。因而,从油气藏开发的角度出发,实验辫状河构 型特征可对应单砂体内部构型。

1.3 实验数据处理方法

实验过程中采集的激光点云数据是具有三维坐标、图像信息的离散点云,无法直接用于沉积学分析和构型解剖。实验数据的处理分为三个步骤,首先,采用Scene软件对单期次多站点云数据进行融合处

理,形成坐标系统一的点云数据;随后,提取实验辫状河区域内点云,并进行点云数据优选和网格化,形成各期次模拟后的数字化沉积地貌数据与正射投影 图像数据;进一步地,对沉积地貌数据集进行去趋势 处理,排除底床顺源高程差异,突出辫状河心滩与辫 状水道形态、规模信息并用于沉积演化过程分析;最 后,参考Straub et al.⁴⁹¹提出的数字地层重构方法,开 展沉积演化过程回溯,计算经过反复侵蚀改造后最 终保存在沉积记录中的期次边界,并据此重构模拟 辫状河三维空间结构模型,该模型用于沉积构型模 式研究与沉积构型单元定量规模测量分析。

2 辫状河形成与持续演化特征

2.1 实验辫状河形成过程

在实验初期(第1~16模拟期次),水流携带沉积 物进入砂质平缓的砂质底床上发生沉积并逐步演化 形成一条典型的砂质辫状河(图3)。在辫状河的逐 步形成过程中,砂质沉积物主要以底床搬运方式顺 源推进,首先形成初始的心滩和初步的辫状水道分 流(图3a、图4),随着砂质沉积物向下游迁移,心滩数 量增加,辫状水道流程延长、数量增加、弯曲度变大 (图3b~c),这一过程中,已形成的上游心滩也在快速 演化。以第9期形成的心滩 Bar-A 为例,在经历3个 周期的模拟后,该心滩已经被后续的辫状水道侵蚀 切割,由半对称的大规模复合心滩转变为多个近对 称的小规模心滩,辫状水道由单侧环绕转变为多条 交织环绕(图 3c~d),到第12 期模拟结束,该心滩已 发生明显的顺源迁移,形成大规模复合心滩。基于 辫状河初始形成过程的观察表明,底床搬运是砂质 辫状河形成过程中的基本动力机制,这一机制决定 了砂质辫状河整体水浅流急,无法形成长期稳定的 水道,其演化总是伴随着底床沉积物迁移堆积、心滩 增生、辫状水道迁移等复杂的迁移变化过程,且河网 与心滩演变速度快、频次高。

0.8

0.4

0 -**-**

0.4

Y/m 0.4 0.8

∞._(d

0.8 0 (e)

0 0.4

辫状水道 初始分流

Bar-A

Bar-A-1

Bar-A

需要注意的是,初始形成的心滩主要由上游辫 状河道集中供给而成,整体呈现朵状特征(图3,4), 与后期遭受辫状水道改造后的心滩存在较大差异。 典型的初始心滩Bar-B(图4)在形成过程中先由上游 辫状水道供给形成朵状雏形并持续顺源增大(图 4a1~a2,b1~b2),随后,由于心滩顶部堆积沉积物出 露水面,心滩增生转向侧缘(图4a3~a4,b3~b4),最后 该心滩发生退积和侧积,转而在心滩上游及侧缘发 生增生(图4a5~a6,b5~b6)。这类初始心滩在随后的 沉积演化过程中往往被部分破坏,并最后残存于辫 状河底部。由于心滩形成过程中存在进积、退积及 侧积,其内部构型较为特殊,有别于辫状河演化成熟 阶段形成的心滩。

2.2 辫状水道与心滩连续协同演化机制

不同于辫状河形成初期沉积物持续顺源推进的 特征,一旦辫状河形成并进入持续演化期,辫状水道 与心滩整体样式大致维持稳定,但辫状水道与心滩 的协同演化仍连续进行,表现为辫状水道频繁迁移 演化,心滩也随之逐步发生增生、遭受改造甚至被彻 底侵蚀,从而形成十分复杂的沉积构型,多数心滩和 辫状水道沉积难以被完整保存。因而,明确辫状水 道与心滩协同演化模式,是深入揭示地下储层沉积 构型的必要前提,据分析,辫状水道与心滩的协同演 化机制主要包括三类。

7 5

2.2.1 辫状水道连续侧向迁移主导心滩侧积增生

辫状水道连续侧向迁移现象常见于心滩侧缘, 主要位于水道弯曲部位,由上游供水与心滩表面水 流汇入共同控制形成二次流(secondary flow),导致在 局部河段发生水道单向环流,引发辫状水道局部段 发生凸岸侵蚀和凹岸堆积。在实验过程中辫状水道 连续侧积现象十分常见,并主导心滩的侧向增生。 以第15~19期次模拟过程中局部河段为例(图5),心 滩Bar-C侧缘较宽的辫状水道Ch-A受到心滩分布控 制发生连续侧积,侵蚀该水道凸岸心滩,并引发凹岸 心滩不断侧积,形成侧积尾翼(图5)。在辫状水道连 续侧向迁移过程中,其上游段整体维持稳定,但下游 快速扫动(图5a~c)并最终取直改道(图5d),在这一 过程中侧积尾翼甚至充填了因下游河段快速迁移而 废弃的河道(图5d)。

辫状水道连续侧积是其一侧心滩遭受侵蚀而另 一侧心滩发生侧积的主导因素,这一现象多发生在 心滩中游侧缘。在连续侧向迁移过程中,辫状水道

图 4 典型心滩的初始形成过程 (al~a6)去趋势地貌;(bl~b6)单期次沉积厚度增量分布

Fig.4 Initial formation of a typical braid bar

 $(a1\mathcar{-}a6)\ detrend\ topography; (b1\mathcar{-}b6)\ sediment\ thickness\ increment\ distribution\ within\ a\ run\ step$

上游基本维持稳定而下游快速迁移,最终导致下游 取直改道,心滩尾部也往往因下游水道迁移废弃的 河道被快速充填而与更下游心滩复合(图5d)。

不同于曲流河侧向迁移过程中河道本身的高度 稳定特征,辫状水道的侧积往往导致其下游河段发 生快速的迁移和废弃一充填沉积。受辫状水道连续 侧积影响,其凸岸一侧心滩多遭受深切而难以完整 保存(图5c~d);而其凹岸一侧形成的增生体拼合于 原有心滩侧缘,且新形成的增生体侧积方向明显有 别于原有心滩内部增生体(图5d)。

2.2.2 辫状水道废弃充填并与心滩拼接复合

在辫状水道网络中,局部河段的变迁易引起下 游河段废弃,形成废弃充填沉积并与邻近心滩拼接 复合,从而导致心滩迅速增生。以第20~21期次模拟 过程中局部河段为例(图6),在第20期模拟结束后 心滩Bar-D一侧较大规模辫状水道Ch-B因其上游水 道变迁而流量锐减(图6a),在第21期次模拟过程中, 该辫状水道被迅速充填并与心滩Bar-D拼合形成更 大规模的复合心滩(图6b)。

大规模或主干型辫状水道废弃后,其下游多条水 道也可能同步废弃。如Ch-B废弃地充填的同时,还 存在多条同步废弃的水道,这类水道主要是心滩中下 游中央部位具有汇流特征的小规模水道或水道组合, 其主要成因是心滩表面沉积物顺水流向下游搬运沉 积,这类废弃水道充填造成心滩顺流增生或加积,主 要影响心滩中下游中央部位厚度(图6c),这类废弃河 道充填广泛存在于心滩中下游部位,图5所示的连续 迁移辫状水道下游也存在多条这类废弃河道充填沉 积。大规模或主干型河道废弃过程中,也可能形成小 规模、短时存续的取直水道(Ch-D)(图6b,c),这类水 道往往形成于大规模或主干型水道废弃末期,难以持 续稳定存在,在后续的沉积过程中易被充填。

2.2.3 辩状水道汇水冲刷与心滩重构

在辫状河沉积演化过程中,同一河段多条辫状 水道往往因相向迁移而汇水,由于河床内水流几乎 完全汇集于一条大规模水道内,水动力骤然增强,可

大面积侵蚀其下游心滩,并在短时间内局部或整体 重塑下游心滩形态(图7)。

以第25~27期模拟过程中局部河段为例,在第 25~26期次模拟中,心滩Bar-E、Bar-F仅受到辫状水 道迁移或取直冲刷轻微改造,主要的辫状水道Ch-E 和Ch-F维持稳定,心滩Bar-F受辫状水道Ch-G和 Ch-I的废弃与取直下切而发生形变,但河段整体特 征维持大体稳定(图7a,b)。在第27期次模拟中,心 滩Bar-E上游辫状水道发生汇聚,形成大规模辫状水 道Ch-J并冲刷心滩Bar-E,导致该心滩大部区域被深 切冲蚀。被侵蚀的沉积物顺水流搬运至下游并导致 心滩Bar-G的形成和心滩Bar-F的迎水生长(图7c)。 仅在1个模拟期次内,辫状水道汇水冲刷导致心滩 Bar-E被整体重塑,而心滩Bar-F发生局部重塑(图7)。

对整个实验的观察结果显示,辫状水道汇水冲刷 作用发生频次较高、维持时间较短但对辫状水道网络 与心滩的重塑作用强烈。距离汇水点越近,水流冲刷 作用越强,可导致心滩主体被完全冲蚀,冲刷点下游 方向则在短时间内迅速堆积被冲刷搬运的沉积物,因 而下游河段辫状水道数量增加、水深变浅(图7c)。 汇水冲刷作用的范围通常在长1~2个复合心滩长度 的河段内发生,并不直接影响下游河段沉积特征。 因此,辫状河沉积演化过程中,普遍存在局部河段快 速演变,整体水道一心滩样式维持稳定的特征。

2.3 心滩沉积规模变化规律与保存特征

针对实验过程的系统观察表明,心滩沉积演化 过程中普遍存在形成、生长、遭受侵蚀、残存等过程, 在这一过程中心滩规模随之有规律地变化。基于去 趋势沉积地貌图对实验辫状河沉积演化过程中存在 的典型心滩进行连续追踪与规模测量(图8),取得以 下结果:(1)单个心滩的形成过程较为迅速,通常在 1~6个模拟期次内持续生长至最大规模,随后在3~8 个模拟期次内遭受连续侵蚀而规模减小(表2),最终 仅小部分得以最终保存或被完全侵蚀(图8);(2)部

(a)心滩长度变化;(b)心滩宽度变化;(c)心滩长宽比变化;(d)心滩面积变化;A.~K.代表实验过程中观察到的不同心滩
 Fig.8 Evolutionary principles of the scale of the braided bar in the experimental braided river
 (a) channel bar length change during the experiment; (b) channel bar width change during the experiment; (c) length to width ratio change during the experiment; (d) chan-

(a) channel bar length change during the experiment; (b) channel bar width change during the experiment; (c) length to width ratio change during the experiment; (d) channel bar area change during the experiment; A.-K. represent different channel bars observed during the experiment process

分心滩形成过程中经历侵蚀、生长、再侵蚀,或同时 遭受侵蚀和生长,其规模存在一定程度的波动,但其 最终保存情况不变;(3)心滩长宽及面积变化大体保 持一致,但其长宽比存在一定程度的波动,心滩长宽 比平均为2.8,与现代辫状河测量结果相近^[24,35,50],多 数心滩在演化过程中维持稳定,但部分心滩在其演 化末期受到较大幅度侵蚀后存在长宽比增大现象。 针对11个典型心滩演化过程完整追踪的测量结果显 示,心滩形成后受到辫状水道的进一步侵蚀改造,仅 18.66%~57.41%的分布区域残存于沉积体中(表2), 平均最终保存率为36.28%。

3 砂质辫状河沉积构型特征

在辫状水道与心滩协同演化模式分析的基础 上,利用序列化沉积地貌数据重构实验辫状河三维 数字化沉积构型模型并提取典型部位构型剖面,再 现了实验后最终保存在沉积记录中的砂质辫状河沉 积构型特征(图9)。需要指出的是,水槽沉积模拟产 生的辫状河规模较小,按固定时间间隔进行三维激 光扫描并重构的模拟辫状河三维构型模型内主要包 含了复合砂体、单砂体及单砂体内部增生体(Miall分 级为5~3级)3个级次的构型单元信息。

表 2 典型心滩沉积期次、面积及最终保存率 Table 2 Depositional duration, area and, preservation ratio

沉积河段 Y/m	沉积期次	最大面积/m ²	最终面积/m ²	心滩最终保存率(最终面积/最大面积)/%
4.0~5.8	5~14	0.98	0.24	24.49
2.7~5.2	10~15	0.79	0.28	35.44
5.3~7.0	15~24	0.70	0.31	44.29
3.0~5.9	16~30	1.34	0.25	18.66
6.3~7.6	19~26	0.54	0.20	37.52
1.4~3.7	20~28	0.87	0.16	22.09
4.0~6.1	26~37	0.87	0.27	30.55
6.0~7.5	29~44	0.65	0.27	41.98
2.8~4.5	35~40	0.62	0.30	47.91
5.1~6.8	37~48	0.95	0.55	57.41
3.8~5.4	40~46	0.73	0.28	39.16
	沉积河段 Y/m 4.0~5.8 2.7~5.2 5.3~7.0 3.0~5.9 6.3~7.6 1.4~3.7 4.0~6.1 6.0~7.5 2.8~4.5 5.1~6.8 3.8~5.4	沉积河段 Y/m 沉积期次 4.0~5.8 5~14 2.7~5.2 10~15 5.3~7.0 15~24 3.0~5.9 16~30 6.3~7.6 19~26 1.4~3.7 20~28 4.0~6.1 26~37 6.0~7.5 29~44 2.8~4.5 35~40 5.1~6.8 37~48 3.8~5.4 40~46	沉积河段 Y/m 沉积期次 最大面积/m ² 4.0~5.8 5~14 0.98 2.7~5.2 10~15 0.79 5.3~7.0 15~24 0.70 3.0~5.9 16~30 1.34 6.3~7.6 19~26 0.54 1.4~3.7 20~28 0.87 4.0~6.1 26~37 0.87 6.0~7.5 29~44 0.65 2.8~4.5 35~40 0.62 5.1~6.8 37~48 0.95 3.8~5.4 40~46 0.73	沉积河段 Y/m 沉积期次 最大面积/m ² 最终面积/m ² 4.0~5.8 5~14 0.98 0.24 2.7~5.2 10~15 0.79 0.28 5.3~7.0 15~24 0.70 0.31 3.0~5.9 16~30 1.34 0.25 6.3~7.6 19~26 0.54 0.20 1.4~3.7 20~28 0.87 0.16 4.0~6.1 26~37 0.87 0.27 6.0~7.5 29~44 0.65 0.27 2.8~4.5 35~40 0.62 0.30 5.1~6.8 37~48 0.95 0.55 3.8~5.4 40~46 0.73 0.28

图9 实验辫状河构型特征(图中黑色线条为3级构型界面一增生体界面)

(a)模拟结束后实验辫状河图像及剖面位置;(b1~b4)模拟辫状河横剖面构型特征(L1-R1、L2-R2、L3-R3、L4-R4);(c1,c2)模拟辫状河纵剖面构型特征(L5-R5、L6-R6) Fig.9 Sedimentary architecture of the experimental braided river

(Black lines are 3rd level architecture interfaces-boundary of accretions)

(a) photography the experimental braided river and section positions in fig.9; (b1-b4) transversal architecture sections of the experimental braided river (L1-R1,L2-R2,L3-R3, L4-R4); (c1, c2) longitudinal architecture sections of the experimental braided river (L5-R5, L6-R6)

3.1 辫状水道沉积构型特征

根据辫状水道形态、规模、叠切样式等特征差异,实验结束后保存在最终沉积记录中的辫状水道(4级构型单元)主要分为三类,包括复杂叠切水道(图9,类型A)、下切水道(图9,类型B)、孤立水道(图9,类型C)。

复杂叠切水道发育程度最高,由多期辫状水道 侧向迁移沉积与垂向叠切而成的增生体(4级构型单 元)构成,其宽度可达单一辫状水道的2~10倍,平均 宽0.28 m、深0.12 m。复杂叠切水道内部一般存在 3~15期水道叠切过程(图9b1~b4),单期水道整体较 厚,在横切剖面上表现为高强度叠切,而在平面上则 表现为多条流向不同、规模各异、河段长度参差的水 道在某一河段反复迁移活动(图7)。复杂叠切水道 之间也存在侧向叠切或拼接,导致其宽度远大于剖 面上的心滩沉积宽度(图9b1~b4)。在顺源方向上, 复杂叠切水道延伸叠切强度较低(图9c1~c2),其叠 切过程与不同模拟期次内不同辫状水道深度、迁移 活动强度及方向相关。

下切水道多形成于辫状河模拟的初期阶段,由水流汇集深切后充填而成,侵蚀底床并随后充填(图 9b2,b4,c1,c2,类型B)。下切水道仅局部存在,其深度与复杂叠切水道相当,但宽度明显小于复杂叠切水道。

孤立水道在切物源剖面上发育程度较低,属于 短时存在的辫状水道(图9b2~b3,类型C),多由新形成的辫状水道快速废弃充填形成。

统计剖面上辫状水道面积占比可知,以复杂叠 切辫状水道为主的水道沉积占比可达57.9%,这表明 在最终保存的辫状河沉积体内,河道占比高于心滩。

3.2 心滩沉积构型特征

剖面构型分析表明,实验辫状河内部心滩(4级 构型单元)存在5方面特点:其一,心滩多被辫状水道 切割,规模较小,形态破碎(图9),与现代沉积或实验 地貌中识别出的心滩宽度相比显著偏小;其二,心滩 一般由多个垂向加积体构成(3级构型单元),平均单 个心滩内包含3~8个期次内形成的多个加积体,加积 体顶底界面通常平缓(图9),仅少量心滩内部增生体 存在底平顶凸的特征(图9b4);其三,剖面上心滩沉 积占比仅为42.1%,显著低于现代辫状河观察结果; 其四,辫状河底部心滩往往连续性更好、规模更大, 受辫状水道侵蚀改造程度较低,而中上部心滩沉积 比例偏低,且被辫状水道侵蚀改造程度更高(图9); 其五,在垂向上,心滩增生体之间往往存在密集发育 的增生体界面,显示该处存在连续多期薄层披覆泥 岩沉积,为泥质夹层。

4 构型单元及其内部增生体规模与 定量关系

以重构的模拟辫状河三维空间结构模型为基础,截取切物源剖面并测量最终保存在实验辫状河 沉积体内部的构型单元及增生体单元的定量规模, 建立了构型单元及其内部增生体定量规律。

4.1 主要构型单元及其内部增生体规模

以重构的多条构型剖面为基础,测量相邻的辫状水道一心滩组合18个、心滩26个、辫状水道33个、 心滩内部增生体180个、水道内部123个,并按测量 剖面统计其平均值(表3),结果表明:(1)辫状水道沉 积占比介于44.81%~66.20%,平均为57.9%,是辫状 河沉积的主体;(2)心滩沉积占比为42.1%,单一心滩 平均宽0.258 m、厚0.013 m,宽厚比为19.8;(3)单一 心滩内平均发育5.7~12.4 期增生体,增生体平均宽 0.127 m、厚0.005 m,宽厚比为25.4;(4)水道沉积平 均宽0.268 m、厚0.019 m,宽厚比为14.1;(5)单一水 道内平均包含4.2 期增生体,平均宽0.137 m、厚 0.010 m,宽厚比为13.7。

4.2 构型单元及其内部增生体定量关系

根据测量所得定量规模数据,明确了砂质辫状 河沉积体内部心滩、水道及两者内部增生体规模的 定量关系(图10)。结果表明:(1)心滩与辫状水道宽 度存在良好的正相关关系,线性拟合优度为0.716 (图10a),两者厚度也存在正相关关系,但由于部分 水道垂向叠切或水平叠切拼合,其厚度变化幅度较 大,线性拟合优度仅为0.341(图10b);(2)心滩、水道 的宽度与厚度整体呈正相关关系,但由于部分心滩 被侵蚀程度高、叠置期次较多、少数水道侧向叠切拼 接程度异常高,线性拟合优度仅为0.378、0.227(图 10c~d);(3)心滩内部增生体的宽度、厚度也存在一 定的正相关关系,部分增生体因遭受较强的侧向侵

表3 剖面沉积构型单元规模

Table 3	Scale of	sedimentary	architecture	elements	measured	from	transverse	sections
---------	----------	-------------	--------------	----------	----------	------	------------	----------

_													
测量		र्य स स म	水道沉	心滩平	心滩平	心滩平均增	心滩增生体	心滩增生体	水道平	水道平	水道内平均	水道增生体	水道增生体
	测量参数	可回回你	积占比	均厚度	均宽度	生体数量	平均厚度	平均宽度	均厚度	均宽度	增生体数量	平均厚度	平均宽度
		$/m^2$	1%	/m	/m	层/心滩	/m	/m	/m	/m	层/水道	/m	/m
	L1-R1	0.033	66.20	0.012	0.133	5.7	0.004	0.109	0.018	0.190	4.1	0.01	0.094
	L2-R2	0.036	62.08	0.014	0.307	11.6	0.005	0.108	0.021	0.300	3.4	0.011	0.192
	L3-R3	0.034	56.47	0.013	0.326	7.5	0.005	0.142	0.019	0.219	3.7	0.009	0.136
	L4-R4	0.029	44.81	0.014	0.266	12.4	0.004	0.147	0.019	0.362	6.3	0.01	0.124
	所有剖面平均	0.033	57.90	0.013	0.258	9.3	0.005	0.127	0.019	0.268	4.4	0.01	0.137

(a)心滩与辫状水道宽度相关性;(b)心滩与辫状水道沉积厚度相关性;(c)心滩宽厚相关性;(d)辫状水道沉积宽厚相关性;(e)心滩内部增生体宽厚相关性:(f)辫状水道内部增生体宽厚相关性

Fig.10 Scale fitness of sedimentary architecture elements and their internal accretions

(a) correlation of channel bar width and braid channel width; (b) correlation of channel bar thickness and braid channel thickness; (c) correlation of channel bar thickness and width; (d) correlation of braid channel thickness and width; (e) correlation of channel bar accretion thickness and width; (f) correlation of braid channel accretion thickness and width

蚀切割,残存下来的增生体厚度较大、宽度较小;(4) 水道内部增生体大致可分为3类,除主体样本外,存 在沉积动力弱、侵蚀改造强度较低的厚层侧向增生 体和沉积动力较强、侵蚀改造强度高的两类规模异 常的增生体。

需要指出的是,水槽模拟形成的辫状河规模较 小,其沉积过程也受限于水槽测量固定边界,因而测 量得到的沉积构型单元定量规模与自然界辫状河可 能存在一定程度的差异,有必要寻找出露状态较好 的大规模露头群开展对比验证。

5 结论

(1)砂质辫状河的初期演化主要表现为砂质沉积从源头向下游连续推进,形成初始心滩并逐渐发生水道分叉汇聚,初始心滩一般由上游水道集中供给形成,经过前积、退积及侧积逐步形成,多呈朵状,规模较大,通常仅发育于辫状河底部,最终保存程度较高。

(2) 在辫状河形成后,辫状水道与心滩连续协同 演化,主要存在三种机制,包括:①辫状水道连续侧 积主导心滩侧积增生;②辫状水道废弃充填并与心 滩拼接复合;③辫状水道汇水冲刷导致下游心滩重构。辫状水道与心滩频繁、快速且持续的协同演化导致心滩快速形成并随后持续遭受后期水道侵蚀改造,心滩平均最终保存比例仅约36.28%

(3)模拟实验结束后,最终保存的砂质辫状河沉 积体内,辫状水道占比约57.9%,心滩占比约42.1%。 辫状水道主要分为复杂叠切水道、下切水道及孤立 水道,其中复杂叠切水道发育比例最高。心滩多遭 受水道侵蚀改造,规模较小,形态破碎,显著小于从 沉积地貌观察测量获得的活跃心滩规模。心滩内部 一般包含多个垂向加积体,其顶底界面多平缓。整 体上,辫状河沉积体下部心滩保存程度较高,中上部 心滩保存程度低、规模小、与辫状水道叠切关系 复杂。

(4) 辫状水道网络频繁变迁主导下形成的砂质 辫状河沉积整体可视为一个泛连通砂体(5级),其内 部由遭受复杂叠切过程而残存的辫状水道与心滩(4 级)构成,其中,辫状水道主要为侧向叠切拼接或孤 立分布,整体保存程度较高,形态较为完整,心滩则 分布于辫状水道之间,以残存状态有限保存。辫状 水道内部通常包含多期、多类增生体(3级),心滩内 部通常包含多期垂向加积增生体(3级),垂向增生体 之间往往存在披覆泥岩夹层。

(5) 系统的规模测量表明,辫状水道与心滩宽厚 比为14.1和19.8,单一心滩内部发育5.7~12.4期增生 体,增生体平均宽厚比为25.4,单一水道内部平均包 含4.2期增生体,宽厚比为13.7。辫状水道、心滩及 其内部增生体宽厚具有明显线性正相关关系,但辫 状水道侧向拼接复合程度和辫状水道侵蚀切割强度 差异导致部分水道、心滩及增生体规模异常。

参考文献(References)

- [1] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究 进展述评[J]. 沉积学报,2017,35(5):926-944. [Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.]
- [2] 张昌民,张尚锋,李少华,等.中国河流沉积学研究20年[J]. 沉积学报,2004,22(2):183-192. [Zhang Changmin, Zhang Shangfeng, Li Shaohua, et al. Advances in Chinese fluvial sedimentology from 1983 to 2003[J]. Acta Sedimentologica Sinica, 2004, 22(2): 183-192.]
- [3] 张金亮.河流沉积相类型及相模式[J]. 新疆石油地质,2019,40 (2):244-252. [Zhang Jinliang. Fluvial facies styles and their sed-

imentary facies models[J]. Xinjiang Petroleum Geology, 2019, 40 (2): 244-252.]

- [4] 张宪国,林承焰,张涛,等.大港滩海地区地震沉积学研究[J]. 石油勘探与开发,2011,38(1):40-46. [Zhang Xianguo, Lin Chengyan, Zhang Tao, et al. Seismic sedimentologic research in shallow sea areas, Dagang[J]. Petroleum Exploration and Development, 2011, 38(1):40-46.]
- [5] 张昌民,尹太举,赵磊,等. 辫状河储层内部建筑结构分析[J]. 地质科技情报,2013,32(4):7-13. [Zhang Changmin, Yin Taiju, Zhao Lei, et al. Reservoir architectural analysis of braided channel[J]. Geological Science and Technology Information, 2013, 32 (4): 7-13.]
- [6] 文华国,郑荣才,高红灿,等.苏里格气田苏6井区下石盒子组 盒 8 段沉积相特征[J]. 沉积学报,2007,25(1):90-98. [Wen Huaguo, Zheng Rongcai, Gao Hongcan, et al. Sedimentary facies of the 8th member of Lower Shihezi Formation in Su6 area, Sulige gas field[J]. Acta Sedimentologica Sinica, 2007, 25(1): 90-98.]
- [7] 谭程鹏,于兴河,李胜利,等. 辫状河—曲流河转换模式探讨: 以准噶尔盆地南缘头屯河组露头为例[J]. 沉积学报,2014,32
 (3):450-458. [Tan Chengpeng, Yu Xinghe, Li Shengli, et al. Discussion on the model of braided river transform to meandering river: As an example of Toutunhe Formation in southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 450-458.]
- [8] 贾爱林,唐俊伟,何东博,等.苏里格气田强非均质致密砂岩储 层的地质建模[J].中国石油勘探,2007,12(1):12-16,92. [Jia Ailin, Tang Junwei, He Dongbo, et al. Geological modeling for sandstone reservoirs with low permeability and strong heterogeneity in Sulige Gasfield[J]. China Petroleum Exploration, 2007, 12 (1): 12-16, 92.]
- [9] 郭智,孙龙德,贾爱林,等. 辫状河相致密砂岩气藏三维地质建模[J]. 石油勘探与开发,2015,42(1):76-83. [Guo Zhi, Sun Longde, Jia Ailin, et al. 3D geological modeling for tight sand gas reservoir of braided river facies[J]. Petroleum Exploration and Development, 2015, 42(1):76-83.]
- [10] 陈东阳,王峰,陈洪德,等.鄂尔多斯盆地东部府谷天生桥剖面上古生界下石盒子组8段辫状河储层构型表征[J].石油与天然气地质,2019,40(2):335-345. [Chen Dongyang, Wang Feng, Chen Hongde, et al. Characterization of braided river reservoir architecture of the Upper Paleozoic He 8 member on Fugu Tianshengqiao outcrop, eastern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(2): 335-345.]
- [11] 陈仕臻,林承焰,任丽华,等.砂质辫状河沉积模式的建立:以委内瑞拉奥里诺科重油带H区块为例[J]. 沉积学报,2015,33
 (5):965-971. [Chen Shizhen, Lin Chengyan, Ren Lihua, et al. Establishment of the depositional model of sandy braided river: A case from the H block in Orinoco Heavy Oil Belt, Venezuela [J]. Acta Sedimentologica Sinica, 2015, 33(5): 965-971.]
- [12] 葛云龙,逯径铁,廖保方,等.辫状河相储集层地质模型:"泛 连通体"连通体"石油勘探与开发,1998,25(5):77-79,5-6,

[Ge Yunlong, Lu Jingtie, Liao Baofang, et al. A braided river reservoir geological model: "Pan communicated sandbody"
[J]. Petroleum Exploration and Development, 1998, 25(5): 77-79, 5-6, 13.]

- [13] Li S L, Yu X H, Chen B T, et al. Quantitative characterization of architecture elements and their response to base-level change in a sandy braided fluvial system at a mountain front[J]. Journal of Sedimentary Research, 2015, 85(10): 1258-1274.
- [14] 刘钰铭,侯加根,宋保全,等. 辫状河厚砂层内部夹层表征:以 大庆喇嘛甸油田为例[J]. 石油学报,2011,32(5):836-841.
 [Liu Yuming, Hou Jiagen, Song Baoquan, et al. Characterization of interlayers within braided-river thick sandstones: A case study on the Lamadian oilfield in Daqing[J]. Acta Petrolei Sinica, 2011, 32(5): 836-841.]
- [15] 杨丽莎,陈彬滔,李顺利,等.基于成因类型的砂质辫状河泥 岩分布模式:以山西大同侏罗系砂质辫状河露头为例[J]. 天然 气地球科学,2013,24(1):93-98. [Yang Lisha, Chen Bintao, Li Shunli, et al. Pattern of genesis-based mudstone distribution for sandy braided river: A case study of sandy braided-river outcrop, Datong, Shanxi province, China[J]. Natural Gas Geoscience, 2013, 24(1): 93-98.]
- [16] 孙焕泉,孙国,程会明,等. 胜坨油田特高含水期剩余油分布 仿真模型[J]. 石油勘探与开发,2002,29(3):66-68. [Sun Huanquan, Sun Guo, Cheng Huiming, et al. The simulation models of remaining oil distribution at super-high water-cut stage of Shengtuo oil field[J]. Petroleum Exploration and Development, 2002, 29(3): 66-68.]
- [17] 杜启振,侯加根,陆基孟. 储层微相及砂体预测模型[J]. 石油 学报,1999,20(2):45-50. [Du Qizhen, Hou Jiagen, Lu Jimeng. A predictable geologic model of sedimentary facies and sands
 [J]. Acta Petrolei Sinica, 1999, 20(2): 45-50.]
- [18] 林承焰,孙廷彬,董春梅,等.基于单砂体的特高含水期剩余 油精细表征[J]. 石油学报,2013,34(6):1131-1136. [Lin Chengyan, Sun Tingbin, Dong Chunmei, et al. Fine characterization of remaining oil based on a single sand body in the high water cut Period[J]. Acta Petrolei Sinica, 2013, 34(6): 1131-1136.]
- [19] 胡永乐,王燕灵,杨思玉,等. 注水油田高含水后期开发技术 方针的调整[J]. 石油学报,2004,25(5):65-69. [Hu Yongle, Wang Yanling, Yang Siyu, et al. Adjustment of technical policy for water-flooding oilfield with high water cut in the late stage of development[J]. Acta Petrolei Sinica, 2004, 25(5): 65-69.]
- [20] 计秉玉,李彦兴. 喇萨杏油田高含水期提高采收率的主要技术对策[J]. 大庆石油地质与开发,2004,23(5):47-53. [Ji Bingyu, Li Yanxing. Main technical countermeasures of enhanced oil recovery during high water cut stage in Lasaxing reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2004, 23(5): 47-53.]
- [21] 韩大匡.准确预测剩余油相对富集区提高油田注水采收率研 究[J]. 石油学报,2007,28(2):73-78. [Han Dakuang. Precisely

predicting abundant remaining oil and improving the secondary recovery of mature oilfields[J]. Acta Petrolei Sinica, 2007, 28 (2): 73-78.]

- [22] An H P, Chen S C, Chan H C, et al. Dimension and frequency of bar formation in a braided river[J]. International Journal of Sediment Research, 2013, 28(3): 358-367.
- [23] Egozi R, Ashmore P. Experimental analysis of braided channel pattern response to increased discharge[J]. Journal of Geophysical Research: Earth Surface, 2009, 114(F2): F02012.
- [24] Hundey E J, Ashmore P E. Length scale of braided river morphology[J]. Water Resources Research, 2009, 45(8): W08409.
- [25] Li W, Yue D L, Du Y S, et al. Controls of accommodation to sediment-supply ratio on sedimentary architecture of continental fluvial successions[J]. Petroleum Science, 2023, 20(4): 1961-1977.
- [26] Li W, Colombera L, Yue D L, et al. Controls on the morphology of braided rivers and braid bars: An empirical characterization of numerical models[J]. Sedimentology, 2023, 70(1): 259-279.
- [27] Lisle T E, Ikeda H, Iseya F. Formation of stationary alternate bars in a steep channel with mixed-size sediment: A flume experiment[J]. Earth Surface Processes and Landforms, 1991, 16(5): 463-469.
- [28] Schuurman F, Marra W A, Kleinhans M G. Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(4): 2509-2527.
- [29] Surian N. Fluvial processes in braided rivers[M]//Rowiński P, Radecki-Pawlik A. Rivers - physical, fluvial and environmental processes. Cham: Springer, 2015: 403-425.
- [30] Van De Lageweg W I, Van Dijk W M, Kleinhans M G. Morphological and stratigraphical signature of floods in a braided gravelbed river revealed from flume experiments[J]. Journal of Sedimentary Research, 2013, 83(11): 1032-1045.
- [31] Zhang K, Wu S H, Feng W J, et al. Bar dynamics in a sandy braided river: Insights from sediment numerical simulations[J]. Sedimentary Geology, 2020, 396: 105557.
- [32] 张可,吴胜和,冯文杰,等. 砂质辫状河心滩坝的发育演化过程探讨:沉积数值模拟与现代沉积分析启示[J]. 沉积学报, 2018, 36(1):81-91. [Zhang Ke, Wu Shenghe, Feng Wenjie, et al. Discussion on evolution of bar in sandy braided river: Insights from sediment numerical simulation and modern bar[J]. Acta Sedimentologica Sinica, 2018, 36(1): 81-91.]
- [33] 雷涛,任广磊,李晓慧,等.砂质辫状河心滩沉积演化规律与 沉积构型特征:基于沉积数值模拟的认识[J]. 石油与天然气地 质,2023,44(6):1595-1608. [Lei Tao, Ren Guanglei, Li Xiaohui, et al. Sedimentary evolution pattern and architectural characteristics of mid-channel bars in sandy braided rivers: Understanding based on sedimentary numerical simulation[J]. Oil & Gas Geology, 2023, 44(6): 1595-1608.]
- [34] Best J L, Ashworth P J, Bristow C S, et al. Three-dimensional

sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh[J]. Journal of Sedimentary Research, 2003, 73(4): 516-530.

- [35] Li H C, Li J H, Li Z D. Quantitative scale analysis of the channel bar in a braided river and its internal architecture[J]. Applied Sciences, 2023, 14(1): 257.
- [36] Mumpy A J, Jol H M, Kean W F, et al. Architecture and sedimentology of an active braid bar in the Wisconsin River based on 3-D ground penetrating radar[M]//Baker G S, Jol H M. Stratigraphic analyses using GPR. Boulder: Geological Society of America, 2007: 111-131.
- [37] Okazaki H, Kwak Y, Tamura T. Depositional and erosional architectures of gravelly braid bar formed by a flood in the Abe River, central Japan, inferred from a three-dimensional groundpenetrating radar analysis[J]. Sedimentary Geology, 2015, 324: 32-46.
- [38] Parker N O, Sambrook Smith G H, Ashworth P J, et al. Quantification of the relation between surface morphodynamics and subsurface sedimentological product in sandy braided rivers[J]. Sedimentology, 2013, 60(3): 820-839.
- [39] Rice S P, Church M, Wooldridge C L, et al. Morphology and evolution of bars in a wandering gravel-bed river; lower Fraser river, British Columbia, Canada[J]. Sedimentology, 2009, 56(3): 709-736.
- [40] Sambrook Smith G H, Ashworth P J, Best J L, et al. The sedimentology and alluvial architecture of the sandy braided South Saskatchewan River, Canada[J]. Sedimentology, 2006, 53(2): 413-434.
- [41] Abdel-Fattah Z A. Fluvial architecture of the Upper Cretaceous Nubia Sandstones: An ancient example of sandy braided rivers in central eastern Desert, Egypt[J]. Sedimentary Geology, 2021, 420: 105923.
- [42] Paola C, Borgman L. Reconstructing random topography from preserved stratification[J]. Sedimentology, 1991, 38(4): 553-565.

- [43] Sambrook Smith G H, Ashworth P J, Best J L, et al. The sedimentology and alluvial architecture of a large braid bar, Rio Parana, Argentina[J]. Journal of Sedimentary Research, 2009, 79(8): 629-642.
- [44] Hossain S, Shekhar H, Rahman N. Facies and architectural element analysis of the Upper Bokabil Sandstone in the Bengal Basin[J]. Sedimentary Geology, 2023, 453: 106433.
- [45] Leleu S, Hartley A J, Williams B P J. Large-scale alluvial architecture and correlation in a Triassic pebbly braided river system, Lower Wolfville Formation (Fundy Basin, Nova Scotia, Canada)
 [J]. Journal of Sedimentary Research, 2009, 79(5): 265-286.
- [46] Puig J M, Cabello P, Howell J, et al. Three-dimensional characterisation of sedimentary heterogeneity and its impact on subsurface flow behaviour through the braided-to-meandering fluvial deposits of the Castissent Formation (Late Ypresian, Tremp-Graus Basin, Spain) [J]. Marine and Petroleum Geology, 2019, 103: 661-680.
- [47] Zang D S, Bao Z D, Li M Y, et al. Sandbody architecture analysis of braided river reservoirs and their significance for remaining oil distribution: A case study based on a new outcrop in the Songliao Basin, Northeast China[J]. Energy Exploration & Exploitation, 2020, 38(6): 2231-2251.
- [48] Zhang C M, Yin T J, Wu S H, et al. Architectural element analysis of nonmarine oil and gas reservoir in China, the research history, progress and future trend: A review[J]. Interpretation, 2023, 11(1): SA127-SA154.
- [49] Straub K M, Ganti V, Paola C, et al. Prevalence of exponential bed thickness distributions in the stratigraphic record: Experiments and theory[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F2): F02003.
- [50] Kelly S. Scaling and hierarchy in braided rivers and their deposits: Examples and implications for reservoir modelling[M]//Sambrook Smith G H, Best J L, Bristow C S, et al. Braided rivers: Process, deposits, ecology and management. Oxford: Blackwell Publication, 2006: 75-106.

Sedimentary Evolution Mechanisms and Architecture Models of Sandy Braided Rivers: A study based on quantitative flume experiments

FENG WenJie¹, CAO JingChu¹, ZHANG ChangMin¹, QIAN QiHao², ZHANG Tao³, LEI Tao⁴,

ZHOU ZhiCheng¹

1. School of Geosciences, Yangtze University, Wuhan 430100, China

2. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

3. The Fourth Oil Production Factory of Dagang Oilfield, PetroChina, Tianjin 300280, China

4. Exploration and Development Research Institute, North China Petroleum Bureau, SINOPEC, Zhengzhou 450006, China

Abstract: [Objective] During the sedimentation process of sandy braided rivers, the braided channels undergo frequent, rapid, and continuous shifts that lead to erosion and reworking within the preserved braided river deposits, such that deposited braided bars and braided channels are characterized by a fragmented morphology, relatively small scale, and undefined quantitative relationships. Traditional sedimentary models of sandy braided river sedimentation are inadequate to effectively guide the characterization of subsurface reservoirs. To clarify the sedimentary evolution mechanisms of sandy braided rivers and establish a reliable sedimentary architecture model with quantitative size relationships, this study conducted a flume experiment using constant boundary conditions to reproduce the formation and evolution of a sandy braided river. [Methods] Using a laser scanner, we obtained topographic data at regular time intervals and accurately reconstructed a three-dimensional sedimentary architecture model of the simulated braided river. Furthermore, the study analyzed sedimentary evolution mechanisms, dissected the sedimentary architecture, and constructed the quantitative size and relationship models for architecture elements. [Results] (1) In the initial stage of sandy braided river sedimentation, sediments undergo bedload transportation downstream, forming initial bars. The deflected flow converges into channels, further developing lobe-shaped initial bars, which are then reshaped and organized into a stable network of braided channels and bar patterns through the action of the braided channels. (2) Following the formation of the braided river, the braided channels and bars continually co-evolve, primarily through three mechanisms: lateral accretion of bars driven by braided channels, abandonment and infilling of braided channels overlaying existing bars, and scouring of the confluence by braided channels, which results in downstream bar reorganization. (3) During simulation, bars form within 1 to 6 run steps and grow to their maximum size before experiencing continuous erosion over 3 to 8 simulation periods, ultimately leading to preservation in only 36.28% of the area. (4) Upon completion of the simulation, the internal structure of the braided river deposit is dominated by braided channel deposits, accounting for approximately 57.9%, which can be classified into complex stacked, incised, and isolated channels. Bars often undergo erosion and reworking from channels, presenting as smaller, fragmented forms. (5) Within the preserved deposit, the average width-to-thickness ratio of braided channels is 14.1, with an internal accretion ratio of 13.7, whereas for bars, the ratio is 19.8, with an internal accretion ratio of 25.4. [Conclusions] This study constructed the complex sedimentary architecture formed within sandy braided river deposits after persistent and intensive erosional modification by the braided channel network, establishing a quantitative model of the size and relationships between internal architectural elements and providing a more geologically realistic and quantitative sedimentary architecture model for characterizing subsurface reservoirs.

Key words: sandy braided river; quantitative flume experiment; depositional evolution; sedimentary architecture; quantitative scale and relationship model