文章编号:1000-0550(2011)06-1079-07

塔河油田 12 区块奥陶系裂缝分布规律研究 $^{\circ}$

刘红岐¹² 邱春宁² 唐 洪² 司马立强² 赵 军¹²

(1.油气藏地质与开发国家重点实验室 成都 610500; 2. 西南石油大学资源与环境学院 成都 610500)

摘 要 通过对露头、铸体薄片、岩性分析和成像测井资料观察和分析发现,塔河油田 12 区块奥陶系储层内缝洞发 育,并且裂缝在一间房和鹰山组的储层中起了至关重要的作用,它既是地层流体的存储空间,又是连通孔洞缝的主要 通道。裂缝的发育也增加了储层的非均质性。所以,精细研究裂缝的发育和分布规律,并定量地计算裂缝的相关参数 对于识别奥陶系储层和对储层进行精细综合评价是至关重要的。该文重点对 12 区块鹰山组裂缝性储层进行了研究, 分析裂缝测井响应特征以及裂缝发育和分布规律。采用序贯高斯随机建模方法建立裂缝孔隙度、张开度和渗透率等 参数的三维分布模型,模拟结果表明,12 区裂缝的最大渗透率达到了 3 008.781 × 10⁻³ μm²,平均渗透率为 125.788 × 10⁻³ μm²。模拟的结果说明裂缝对储层物性,特别是渗透性的改造特别明显。

关键词 塔河油田 奥陶系 碳酸盐岩储层 裂缝评价 随机建模 序贯高斯 第一作者简介 刘红岐 男 1970年出生 博士 石油地质学 E-mail: lhqjp1@126.com 中图分类号 TE122.2 文献标识码 A

0 引言

塔河油田 12 区块奥陶系储层是塔里木油田目前 最主要的勘探区块之一。塔河油田 12 区奥陶系油藏 位于塔河油田北部阿克库勒凸起西南斜坡,阿克库勒 凸起是在前震旦系变质基底上发育的一个长期发展 的、经历了多期构造运动和变形叠加的古凸起,先后 经历了加里东期、海西期、印支一燕山期及喜马拉雅 期等多次构造运动^[1-3]。凸起受海西早期古岩溶地 貌残丘与海西晚期褶皱双重作用影响,奥陶系风化壳 顶面呈北西走向的岩溶残丘山,发育一系列北西一近 南北、北东一近东西向的逆断层^[4],断层平面的延伸 长度大约在 0.75~4.5 km、断距大约在 10~30 m 左 右。经过多期构造运动和古岩溶共同作用,在鹰山组 和一间房组风化壳之上形成了岩溶缝洞型碳酸盐岩 油气藏^[4~6]。

郭建华^[7],张希明^[8],李翎等^[9],李江龙等^[10]对 塔河油田碳酸盐岩储层物性特征,特别是储层非均质 性都做过研究。随着塔河油田勘探开发向外扩展,储 层的发育程度、储层特征变化增强,断控特征更明显, 油水关系更趋复杂,勘探难度进一步加大,油田公司 为了提高钻探成功率,提高储层预测准确度,需要进 一步对奥陶系储层的非均质性,特别是储层裂缝的发 育特征以及变化规律进行深入地研究,碳酸盐岩缝洞 型储层的地震、测井综合识别与评价技术亟待进一步 完善。因此本文在前人研究的基础上,重点对塔河油 田12区块奥陶系鹰山组储层的裂缝参数进行了研 究,并借鉴前人的研究方法^[11-13],采用序贯高斯数据 建模的方法,建立了鹰山组裂缝三维地质模型。

1 储层空间特征

根据岩芯、岩石薄片、铸体薄片、荧光薄片和扫描 电镜等各项资料观察、分析,本区奥陶系碳酸盐岩有 效储集空间类型按成因、形态及大小分为三大类型: 孔隙、孔洞和裂缝。

孔隙: 孔隙既有原生的,也有次生的。包括晶间 孔、粒间孔、晶间溶孔、晶内溶孔、粒间溶孔、粒内溶孔 等多种类型。原生孔隙因受到胶结充填、压实压溶等 成岩作用的破坏,几乎消失殆尽。因而次生孔隙是区 内碳酸盐岩的主要储渗空间类型之一。孔径一般几 微米至几百微米,是奥陶系碳酸盐岩储层普遍存在的 储集空间类型^[10,14]。

孔洞:包括溶蚀孔洞和大型洞穴,是奥陶系油藏 主要的储层之一。溶蚀孔洞是沿裂缝或微裂隙发生 溶蚀作用形成的孔洞,大小在2.0~100.0 mm 之间 变化,孔洞内有时会被方解石、粉砂一泥质等部分或 全部充填。大型洞穴是指直径大于100.0 mm 的溶 洞,它往往被洞穴角砾岩、地下暗河沉积物、巨晶方解

①国家科技重大专项(编号:2008ZX05049-02)资助。 收稿日期:2010-07-16;收修改稿日期:2011-10-12

Fig. 1 Core data histogram of Yingshan group of Block 12

石、砂泥岩等物质充填,钻井过程中可以通过部分井 段的放空、钻时加快、漏失大量泥浆、井涌甚至井喷和 测井曲线变形等现象揭示出来。

裂缝:裂缝是流体运移的通道,也是流体储集的 空间 根据成因可以分为构造缝、压溶缝和溶蚀缝等。 根据本区岩芯观察统计表明 构造缝以中一高角度缝 为主,直立缝占 33.4%,斜缝占 25.6%,水平缝占 41.0%。张开度小于1 mm 的小缝约占 59.41%,1~ 10.0 mm 的中缝占 35.9%,大于 10.0 mm 的大缝占 4.69%。通过取芯井的岩芯观察可以看到,裂缝的油 气显示级别多为油迹、油斑,说明裂缝具备了一定的 油气储集能力。

2 储层物性特征

根据岩芯样品分析,12 区鹰山组孔隙度绝大部 分小于2%,占68.57%,平均孔隙度仅为2.241%,如 图 1a 所示。水平渗透率主要分布在 0.01 × 10⁻³ ~ 100 × 10⁻³ μ m²之间,占70.01%,平均为2.85 × 10⁻³ μ m²。垂直渗透率分布在 0.01 × 10⁻³ ~ 1 × 10⁻³ μ m² 之间,占89.85%,平均为0.316 × 10⁻³ μ m²,如图 1b 所示。

这些分析数据充分说明,奥陶系储层基质孔隙度 和渗透率是非常低的,因此必须依靠缝洞的储集性能 和连通作用,才有可能形成具有工业价值的油气藏。

3 裂缝参数研究

3.1 岩芯和成像测井资料裂缝统计

 1)根据岩芯裂缝描述统计出 16 口井岩芯裂缝 数据 裂缝以构造缝为主,以充填和半充填缝为主,以
中小缝为主,以斜交缝为主,张开度偏小,如表1所 示∘

2) 根据成像资料统计出 76 口井裂缝数据,裂缝 以构造缝为主,以充填和半充填缝为主,以中小缝为 主,以斜交缝为主。统计塔河12 区鹰山组岩芯裂缝 共146条,以单组系裂缝为主。

表1 岩芯描述裂缝统计

Table 1 Statistic table of core fracture properties

井名	井段/m		岩芯裂缝描述			
			厚度/m	张开度	裂缝类型	条数
X1	6520.50	6525.8	5.30	中等	斜交缝	9
X2	6525.80	6532.07	6.27	差	立缝	11
X3	6463.45	6465.31	1.86	中等	斜交缝	35
X4	6465.31	6466.31	1.00	中等	斜交缝	33
X5	6704.35	6711.27	6.92	差	斜交缝	11
X5	6871.42	6880.20	8.78	差	斜交缝	12
X6	6376.22	6382.22	6.00	差	斜交缝	21
X6	6556.05	6563.80	7.75	差	斜交缝	20

3.2 裂缝孔洞识别方法

3.2.1 双侧向电阻率判断

X8 井鹰山组 6 322 ~ 6 325 m 段深侧向电阻率为 38 ~ 225Ω • m ,浅侧向电阻率为 27 ~ 165Ω • m , 6 338 ~ 6 346 m 段深侧向电阻率为 57 ~ 196Ω • m ,浅 侧向电阻率为 45 ~ 156Ω • m。深浅电阻率呈明显正 差异,双侧向电阻率为中低值,表明此层段有裂缝存 在,由电成像测井资料知此层段发育多组裂缝,与双 侧向判断一致(图 2)。

3.2.2 三孔隙度判断

三孔隙度相对上下围岩有明显响应,密度值降低,声波、中子增大,推断可能存在裂缝。结合井周声 波成像图一起判断,但是也存在局限性。当岩性变

图 2 X8 井测井成像与曲线图 Fig. 2 Image and curves diagram of Well X8

化、地层含气、泥质薄互层、井眼不规则时,裂缝和溶 (孔)洞发育程度不同都可能影响三孔隙度识别裂缝 的准确度。Y1 井在 6 478 ~ 6 524 m 段,三孔隙度相 对上下围岩都有明显响应,密度值降低,声波、中子增 大,推断在 6 478 ~ 6 524 m 可能存在裂缝。井周声波 成像 CBIL 回波幅度成像图上显示 6 478 ~ 6 524 m 发 育多条裂缝,与三孔隙度综合推断的一致,如图 3 所示。 3.2.3 自然伽马判断

铀非常易于溶解在水中,因此它一般以离子形态存在于地下水中。在地下水运动过程中,通过裂缝 (或溶孔)时,裂缝(或孔洞)壁就会吸附这些铀元素, 使得地层铀含量增加。对正常的沉积环境而言,铀元 素含量低于或接近泥质体积(钍+钾)的数值;当有 裂缝存在时,铀含量导致自然伽马值增高。Z1井 6007~6025m段总自然伽马值相对较高,由能谱曲

图 3 Y1 井测井成像与曲线图 Fig. 3 Image and curves diagram of Well Y1

图 4 Z1 井测井成像与曲线图

Fig. 4 Image and curves diagram of Well Z1

线可知,此层段的高伽马主要是富含铀矿物引起的, 不是泥质原因 结合三孔隙度和双侧向,推断为裂缝 发育段,FMI成像图上显示6012~6025m段发育多 条裂缝,与伽马能谱判断的裂缝结果一致。

3.3 裂缝发育特征

通过对 12 区裂缝发育情况的研究发现,这个区 块的裂缝发育具有以下几方面的特征: 以构造缝为 主,以充填和半充填缝为主,以中小缝为主,以立缝和 平缝为主,鹰山组的有效裂缝比例高于一间房组,塔 河 12 区鹰山组裂缝比一间房组更发育,而一间房组 有效孔洞比鹰山组更发育。Z2 井鹰山组 6 320 ~ 6 350 m段深侧向电阻率为 38 ~ 225Ω • m,浅侧向电 阻率为 27~165Ω•m,深浅电阻率呈明显正差异,双 侧向电阻率为中低值,表明此层段有裂缝存在,由电 成像测井资料知此层段发育多组裂缝,与双侧向判断 一致。如图 5 所示,左侧岩芯深度段 6 320.47~ 6 320.7 m,右侧岩芯深度段 6 340.83~6 341.03 m, 两块岩心均为褐灰色泥晶砂屑褐灰岩,各有一条立 缝,缝面见白色方解石和黑色沥青质,干照沿缝消光, 滴照乳白色。

4 裂缝数值模拟

根据本区 76 口井裂缝识别和裂缝参数,如裂缝 孔隙度、渗透率和张开度等参数的结果,采用随机模

图 5 Z2 测井成像与曲线图 Fig. 5 Image and curves diagram of Well Z2

拟的方法,对裂缝分布规律进行井间数值模拟,如图 6 模拟的节点数是: X × Y × Z = 150 × 120 × 6。

裂缝的张开度、孔隙度和渗透率这三个参数是相 互关联的 序贯高斯模型是一种直接产生来自高斯场 模型实现的方法 ,需要序贯地考查 N 个相关联随机 变量 Z_i 在给定空间 Γ 上的条件分布函数 Z_i 既可以 是空间 Γ 上不同格点同一变量 ,也可以是同一格点 不同的变量。该方法是先将研究区域离散化成网格 系统 然后序贯地处理每一个网格结点。由于每个网 格结点处随机变量是服从条件化的正态分布 因此网 格结点值完全由均值和方差两个参数确定。图7显 示了根据井点数据计算的裂缝参数 ,可以看到张开 度、孔隙度和渗透率都近似服从正态分布 因此可以 用序贯高斯模拟的方法进行建模。

先设定裂缝参数模拟的路径 然后序贯地计算各 节点条件分布函数累计概率,提取模拟值,将模拟好 的点加入到条件数据中 这样做可以充分利用已知条 件去模拟地质参数三维空间的变化规律以及各参数

之间的关系 条件函数符合高斯分布 其数学期望和 方差采用克里金方程组求解。根据目前的应用表明, 这种方法能较好地模拟非均质性很强的储层参数的 三维分布^[15~18]。

图 6 为 12 区鹰山组裂缝张开度、孔隙度和渗透 率模拟结果,从图中可以看出,裂缝的这三个参数非 均质性很强,连片性差。总体上,各参数的值都不高, 变化范围大。

塔河油田 12 区鹰山组裂缝参数变化规律: 裂缝 张开度主要分布在 10~1 000 μm 之间 其中最大张 开度为 4 201.172 μm 最小为 0.005 4 μm 平均张开 度为 509.14 μm。裂缝孔隙度分布在 0.01% ~0.5% 之间,其中最大孔隙度为0.499%,最小为0.003%, 平均孔隙度为 0.133%。裂缝渗透率最大值为 3 008.781×10⁻³ μm²,最小为 0.001×10⁻³ μm²,平 均渗透率为 125.788 × 10⁻³ µm²。明显地高于基质 的渗透率。

(a) fracture width

Fig. 6 Numeric simulation of Yingshan group fracture parameters of Block 12

Distribution histogram of Yingshan group fracture parameters of Block 12 Fig. 7

因此,数值模拟的结果进一步证明了塔河油田 12 区块鹰山组储层非均质性强的特征,同时也进一 步说明,裂缝在改造鹰山组储层渗流特性方面是很有 效果的。

5 结论

通过对塔河油田下奥陶系 12 区鹰山组全直径样 品数据统计分析得知,本区地层属于超低孔、超低渗 储层 绝大部分孔隙度小于 2% ,渗透率小于 1 × 10⁻³ µm²。由于非均质性很强,水平渗透率均大于垂直渗 透率。

根据岩芯和测井资料,研究了常规测井和成像测井的裂缝响应特征,采用电阻率法、孔隙度法、自然伽马法和成像测井资料建立识别直立缝、斜交缝和水平缝方法。

采用序贯高斯随机模拟方法,建立了裂缝张开度、孔隙度和渗透率参数的三维地质模型,对裂缝的 发育进行了综合评价。模型表明,对于塔河油田奥陶 系储层 裂缝是最重要的储集因素,它既是流体的储 集空间,又是流体的通道。数值模拟的结果显示,尽 管裂缝的孔隙度不大,但是裂缝对渗透率的改造非常 明显,12 区鹰山组裂缝平均孔隙度约0.133%,而裂 缝最大渗透率为3 008.781 × 10⁻³ μm²,平均渗透率 为 125.788 × 10⁻³ μm²,而基质渗透率平均值仅为 1.583 × 10⁻³ μm²,这证明了裂缝在碳酸盐岩中对储 层的改造非常明显,尤其是对储层渗流特性效果显 著。通过本次研究,为进一步精细描述鹰山组储层物 性,对储层做出综合评价提供了相应的依据和方法。

参考文献(References)

- 康玉柱.中国塔里木盆地石油地质特征及资源评价[M].北京:地 质出版社,1996: 3-15 [Kang Yuzhu. Resource Evaluation and Geological Characteristics of Tarim Basin, China [M]. Beijing: Geological Publishing House, 1996: 3-15]
- 2 郭建华. 塔里木盆地轮南地区奥陶系潜山古岩溶及其所控制的储 层非均质性[J]. 沉积学报,1996,11(1): 56-63 [Guo Jianhua. Burial hill palaeokarst and its controlled reservoir heterogeneity in Ordovician, Lunnan area of Tarim Basin[J]. Acta Sedimentologica Sinica, 1996,11(1): 56-63]
- 3 吕修祥,金之钧.碳酸盐岩油气田分布规律[J].石油学报,2000, 21(2): 8-12[Lü Xiuxiang, Jin Zhijun. Distribution patterns of oil-gas fields in the carbonate rock[J]. Acta Petrolei Sinica, 2000,21(2): 8-12]
- 4 张希明. 新疆塔河油田下奥陶统碳酸盐岩缝洞型油气藏特征[J]. 石油勘探与开发,2001,28(5): 17-22 [Zhang Ximing. The charac-

teristics of Lower Ordovician fissure-cave carbonate oil and gas pools in Tahe oilfield , Xinjiang [J]. Petroleum Exploration and Development , 2001 ,28(5): 17-22]

- 5 刘文斌. 塔河油田四区奥陶系油藏定容性储渗体注水替油技术 [J]. 钻采工艺,2007,30(5): 30-32 [Liu Wenbin. Water-flooding and replacing oil technology for reservoir and percolation body with constant volume in the Ordovician carbonate reservoir in Tahe Oilfield [J]. Drilling & Production Technology,2007,30(5): 30-32
- 6 康竹林.从塔河油田奥陶系油藏的特征看塔里木盆地台盆区碳酸 盐岩找油前景[J].海相油气地质,2001,(2): 1-5 [Kang Zhulin. View on the exploration prospect of Ordovician carbonate reservoir in platform of Tarim Basin[J]. Marine Origin Petroleum Geology,2001, (2): 1-5]
- 7 张希明,杨坚. 塔河缝洞型碳酸盐岩油藏描述及储量评估技术 [J]. 石油学报,2004,25(1): 13-48 [Zhang Ximing, Yang Jian. Reservoir description and reserves estimation technique for fracture-cave type carbonate reservoir in Tahe Oilfield [J]. Acta Petrolei Sinica, 2004,25(1): 13-18]
- 8 李翎,魏斌,贺铎华. 塔河油田奥陶系碳酸盐岩储层的测井解释 [J]. 石油与天然气地质,2002,23(1): 50-54 [Li Ling, Wei Bin, He Duohua. Log interpretation of Ordovician carbonate rservoirs in Tahe Oilfield[J]. Oil & Gas Geology,2002,23(1): 50-54]
- 9 李江龙,黄孝特,张丽萍. 塔河油田4区奥陶系缝洞型油藏特征 及开发对策[J]. 石油与天然气地质,2005,26(5):630-633 [Li Jianglong, Huang Xiaote, Zhang Liping. Reservoir characteristics and development strategy of Ordovician fractured-vuggy reservoirs in Block 4 of Tahe Oilfield[J]. Oil & Gas Geology, 2005,26(5):630-633]
- 10 金涛. 阿克库勒凸起奥陶系碳酸盐岩古岩溶储层分布规律及圈 闭研究[D]. 成都:成都理工大学,2001 [Kin Tao. Study on the trape and fornation distribution of Ordovician carbonate cavern reservoir of Arkekule uplift [D]. Chengdu: Chengdu University of Technology,2001]
- 11 李少华,张昌民,王振奇,等.利用顺序指示模型方法预测储集 层岩性[J].新疆石油地质,2002,23(1):59-61 [Li Shaohua, Zhang Changmin, Wang Zhenqi. Reservoir lithology prediction by using sequential indicator model [J]. Xinjiang Petroleum Geology, 2002 23(1):59-61.
- 12 印兴耀,贺维胜,黄旭日.贝叶斯—序贯高斯模拟方法[J].石油 大学学报,2005,29(5): 28-32[Yin Xingyao, He Weiwei, Huang Xuri. Bayesian sequential Gaussian simulation method[J]. Journal of the University of Petroleum, China, 2005,29(5): 28-32]
- 13 吕晓光,王德发.储层地质模型及随机建模技术[J].大庆石油 地质与开发,2000,19(1): 10-16 [Lu Xiaoguang, Wang Defa. Reservoir geologic model and random modelling technique [J]. Petroleum Geology & Oilfield Development in Daqing,2000,19(1): 10-16]
- 14 黄捍东. 碳酸盐岩裂缝性储层研究的地质物理基础[J]. 石油地 球物理勘探,2001,36(5):70-74[Huang Handong. Geology-physical bases of studying carbonate-fractured reservoir[J]. Oil Geophysical Prospecting,2001,36(5):70-74]
- 15 Deutsch C V , Srinivasan S MO Y. Geostatistical reservoir modeling

accounting for precision and scale of seismic. $\mbox{Data[R]}.$ SPE ,1996 , October: $9{-}19$

- 16 Deutsch C V , Jorunel A G. The application of simulated annealing to stochastic reservoir modeling [R]. SPE23565 , 1991
- 17 Alister C MacDonald. A prototype procedure for stochastic modeling of facies tract distribution in shore face reservoir [C] // Jeffrey M Yarus ,

Richard L Chambers. Stochastic Modeling and geostatistics. Tulsa, Oklahoma, AAPG, 1994: 91-108

18 Journel A G. Stochastic modeling of a fluvial reservoir: a comparative review of algorithms [J]. Journal of Power Sources, 1998, 21: 95– 121

Study on the Fracture Distribution and Numerical Simulation of Ordovician Carbonate Reservoir in Block 12 of Tahe Oilfield

LIU Hong-qi^{1 2} QIU Chun-ning² TANG Hong² SIMA Li-qiang² ZHAO Jun^{1 2}

(1. State Key Laboratory of Oil and Gas Geology and Exploitation , Chengdu 610500;

2. School of Resource and Environment, Southwest Petroleum University, Chengdu 610500)

Abstract Block 12 Ordovician reservoir is one of the most important exploration and production area of Tahe oilfield in Tarim basin , however , it is a representative extra-low-porosity and extra-low permeability reservoir and , results in much errors in delineating hydrocarbon zones , and so , it is very difficult to identify the reservoir by using conventional well logging data. Investigations of outcrops , cores and scanning electron microscope(SEM) images and well logging images data show that matrix rocks exist lots of fractures and caves. Furthermore , the fracture is a vital important element in Yijianfang and Yingshan groups , which has two primary effects , i. e. one is reserving space for formation liquid , the other is tunnel for hydrocarbon or water migration. The pore morphology , different size and uneven distribution law of fracture. This paper discussed the characteristics of the fractures , and analyzied the reason of fracture occurring , and the distribution law of fractures. This paper used sequence Gaussian randomizing methods to simulate the fracture parameters , such as porosity , permeability and opening. The three-dimensional images of fracture parameters model shows heterogeneous of this reservoir. The simulation result shows that the fractures dramaticlly modify the permeability of the Ordovician reservoir , for the Block 12 , the maximum fracture permeability up to 3008. 781 × 10⁻³ μ m² , The result is in agreement with production data.

Key words Tahe oilfield; Ordovician formation; carbonate reservoir; fracture; randomizing modeling; sequential Gaussian method