文章编号: 1000 0550(2006) 06 0877 06

乌伦古湖沉积物粒度特征及其古气候环境意义[®]

蒋庆丰123 刘兴起1 沈 吉1

(1 中国科学院南京地理与湖泊研究所 南京 210008 2 中国科学院研究生院 北京 1000393. 南通大学地理科学学院 江苏南通 226007)

摘 要 利用乌伦古湖沉积钻孔的粒度资料,分析了粒度频率曲线、粒度参数和粒度组成等粒度特征,并探讨了乌伦 古湖粒度代表的古气候意义。结果表明乌伦古湖沉积物频率曲线主要是正态单峰型,反映流水作用为主要沉积作用。 岩芯下部(225~197 m)沉积物分选较差,偏度和尖度较大,为浅水沉积环境;中部(197~103 m)分选由差变好,物 源由复杂变单一,为浅水沉积向深水沉积过渡环境;上部(103~0 cm)分选较好,物源单一,中值粒径减小,反映了湖 水位的下降。沉积物粒度特征反映了乌伦古湖地区全新世降水、流水和风力作用以及湖面水位高低的变化。乌伦古 湖一万年来的古气候环境演化大致经历了 10 250~7 720 cal aBP的干旱、7 720~2 800 cal aBP的湿润和 2 800 cal aBP以来的偏干三个阶段。

关键词 粒度特征 古气候环境 乌伦古湖

第一作者简介 蒋庆丰 男 1976年出生 博士研究出生 自然地理学 中图分类号 P512 2 文献标识码 A

位于西风带和亚洲季风环流交汇地带的中国西 北干旱区湖泊,对于气候变化的响应十分敏感,成为 国内外许多科学家的研究对象^[1~3]。沉积物的粒度 组成特征是恢复过去古气候、古环境状况的一个重要 代用指标^[4~13]。已有的湖泊沉积研究表明,沉积物 粒径大小代表着湖泊输入水量的相对大小,在一定程 度上可以反映湖区降水的变化,因而具有干湿变化的 指示意义^[4 10]。但由于影响因素众多,湖泊沉积物的 粒度组成所反映的古气候意义可能要复杂的多。本 文选择乌伦古湖沉积物粒度组成作为研究对象,对其 反映的古气候环境意义进行探讨。

乌伦古湖 (46°59′~47°25′N, 87°00′~87°35′E) 位于新疆北部阿勒泰地区福海县 (图 1), 准噶尔一北 天山褶皱系福海山间拗陷内。湖区面积 753 0 km², 最大水深 12 25 m, 平均水深 8 0 m。 气候上属温带 大陆性干旱气候, 年均气温 3. 4°C。 年均降水量 116 5 mm, 最大年降水量 215 0 mm, 最小年降水量 42. 3 mm, 蒸发量 1844 4 mm。 盛行西北风, 最大风 速 18 0~22 0 m /s 12月至翌年 3月为封冻期, 最大 冰厚 0 7 m。湖水主要依赖地表径流补给, 入湖河流为 乌伦古河, 长 821 0 km, 流域面积 32 000 km²。全新 世时期, 与吉力湖原为统一湖体, 湖面辽阔, 后因乌伦 古河入湖河口三角洲发育,湖泊退缩,河道被沙丘阻塞,遂演变为独立的湖泊^[14]。

1 样品采集与分析方法

2004年 7月,利用奥地利产的 UW ITEC 水上平 台和活塞取芯设备,在乌伦古湖中部水深 12 0 m 处 采得一长 225 m 的完整岩芯(图 1)。整个岩芯均为 湖相沉积, 196 m 以上为浅灰色粉砂, 196 ~ 202 m 为灰黑色粘土质粉砂, 202 m 以下为灰绿色粘土质 粉砂。岩芯带回实验室按 1 m 间隔进行样品分割共 得到用于粒度分析的样品 225个。

取少量样品 (约 1 5g)放入 100 m l烧杯内,加入 20 m l蒸馏水和 10 m l 10% 双氧水 (H_2O_2) 以除去有 机质,待充分反应至过量的双氧水完全分解后,再加 入 10 m l 10%的 HC l以除去碳酸盐,反应完全后加入 蒸馏水至 100 m l 静置 12h 抽去上清液,洗去过量的 HC l 加入 20 m l蒸馏水和 10 m l 0 05 m ol / l的六偏 磷酸钠,超声振荡 15分钟后,上仪器进行测量。测量 仪器为英国 M alven公司生产的 M astersizer 2000激光 粒度仪,测量范围 0 02 ~ 2000 μ m 重复测量误差小 于 1%。

①国家重点基础研究发展规划项目(2004CB720200)和中国科学院南京地理与湖泊研究所所长科研专项基金项目共同资助. 收稿日期:2006-0316收修改稿日期:2006-0413

Fig 1 Water depth and core b cation in Wulungu Lake

沉积岩芯的年代测定由日本名古屋大学加速器 质谱实验室完成。7个样品的测年材料为沉积物中 的有机质,¹⁴C的年代校正采用 NTCAL98^{15]},年代分 析结果及其年龄校正值列于表 1。其中 143 m 深度 处的年代与其余 6个年代差异显著,故舍去。剩余 6 个样品年龄值与深度线性关系较好(图 2),推算岩芯 底部 225 m 处年代大致为 10 250cal aBP。各采样 层位年代按 6个年龄进行内插和外推得到。

表 1	L 乌伦古湖沉积岩芯 AM S ¹⁴ C年代
Fable 1	AM S radiocarbon ages of core sed in ents

n w uningu Lake						
深度	测定年代	∂ ³ C	校正年龄	平均值		
/m	/⁴C aBP	(‰)	∕cal aBP	/cal aBP		
27	$1026{\pm}28$	-25 6	928~958	945		
53	$1371\!\pm\!29$	-25 5	$1282 \simeq 1306$	1295		
97	$2466{\pm}29$	-227	$2465 \sim 2700$	2560		
115	$3040{\pm}30$	-26 9	3215 ~ 3325	3265		
143	$3161\!\pm\!30$	-26 3	3361 ~ 3409	3389		
179	$5310{\pm}31$	-25 2	$6004 \sim 6179$	6086		
203	$7432\!\pm\!33$	-25 4	8200~8314	8262		
	深度 /m 27 53 97 115 143 179 203	深度 测定年代 /m / ^A C aBP 27 1026±28 53 1371±29 97 2466±29 115 3040±30 143 3161±30 179 5310±31 203 7432±33	深度 測定年代 ð³C /m / ^A C aBP (%) 27 1026±28 -25 6 53 1371±29 -25 5 97 2466±29 -22 7 115 3040±30 -26 9 143 3161±30 -26 3 179 5310±31 -25 2 203 7432±33 -25 4	深度 測定年代 み³C 校正年龄 /m / ⁴ C aBP (‰) kal aBP 27 1026±28 -25 6 928~958 53 1371±29 -25 5 1282~1306 97 2466±29 -22 7 2465~2700 115 3040±30 -26 9 3215~3325 143 3161±30 -26 3 3361~3409 179 5310±31 -25 2 6004~6179 203 7432±33 -25 4 8200~8314		

图 2 岩芯年代与深度对应图

2 结果与讨论

21 粒度特征

2 1.1 频率曲线特征

乌伦古湖沉积物的粒度频率曲线特征如下(图 3):岩芯 125 cm 和 165~167 cm 的频率曲线基本表 现为 b曲线; 130~134 cm 的频率曲线基本表现为 c 曲线; 157~159 cm; 187~188 cm; 197~207 cm; 217 ~221 m 的频率曲线基本表现为 d曲线;其它层位 的沉积物频率曲线基本上以 a曲线为主。曲线 a为 单峰正态分布,粒度组成相对集中,粉沙粒级占绝对 优势,含量超过 70%,粘土含量稍多于砂含量。 b为 双峰形态,两峰基本持平,粒度组成仍以粉沙为主,粘 土和砂粒级含量基本相当; c d均为主次峰形,但 c 的主峰位于粉沙粒级粗段,接近于砂粒级端,而 d的 主峰位于粉沙粒级细端,粘土粒级含量高。

沉积物的频率曲线特征是判断沉积作用形式的 重要手段之一,频率曲线的峰型变化常反映沉积作用 形式的变化,从图 3可以看出:单峰正态分布形态表 明主要受一种作用影响,粒度组成高度集中于峰形中 间的粉沙粒级,峰形两端的粘土和砂的含量较低,和 流水沉积作用曲线变化一致,因此可以认为曲线 a反 映的是单一流水作用沉积。曲线 b、a d均有两个明 显的峰,说明有其它作用参与了流水搬用沉积过程, 在中纬度干旱区主要为风力搬运作用。其中曲线 b 两峰持平说明流水与风力作用相当;曲线 c表明流水 作用强于风力作用;曲线 d表明流水作用弱于风力作 用。乌伦古湖沉积物的频率曲线在沉积物各层段的 分布表明,流水作用是沉积物沉积的主要动力,从另 外一方面也表明了沉积物的物质来源主要是流水搬 运进入湖泊的。

21.2 粒度参数特征

根据 M dM anus 的矩法公式^[16],利用 Excel表 格^[17]计算了乌伦古湖沉积岩芯的粒度参数 (图 4)。 粒度的标准差变化在 17. 2~36 2之间,说明了沉积 物粒度分布范围广。粒度的偏态为 -0 9~0 4 变 化范围较大,从负偏到正偏^[18]均有分布,总体集中在 较粗粒径部分。粒度的尖度(峰态)变化在 0 6~1 3 之间,属非常窄到中等范围^[18]。

沉积物的粒度参数是反映沉积物来源和沉积环 境的重要指标。湖泊沉积的分选性变化较大、除了受 其沉积环境的自然地理条件和水动力条件影响外,还 与物源有关。不同物源提供的沉积物粒度不一样,即 使是同一物源沉积物粒度也不一定连续,这就会导致 分选变差。标准差可以说是分选系数的倒数,标准差 越大,表示分选越好,反之分选越差。乌伦古湖沉积 物 197 m 以下层位的标准差平均为 19.4, 小于 197 m以上层位的 27.3 表明受两种物源影响的沉积物 分选性较差。偏度也与物源有关。当为分选较好的 单一物源时,频率曲线呈对称单峰形,偏度值接近干 零,变化不大并且连续;当有粗于或细于原有物源的 新物源加入时,分选变差,曲线变为不对称,为正偏或 负偏;当新物源与原有物源相当时,频率曲线呈马鞍 形双峰,趋于对称,偏度接近于零。乌伦古湖岩芯 157 cm以下沉积物的频率曲线间隔呈双峰分布,并 且比 157 cm 以上层位偏度更接近于零, 说明下部分 选较差,物源来源复杂。尖度(峰态)值的大小与沉 积环境有关。尖度值小时,说明沉积物未经改造就进 入新环境,而新环境对它的改造又不明显。乌伦古湖 沉积物 172~185 cm 以及 197 cm 以下的尖度值大于 上部,说明浅水沉积环境的动力作用大于深水沉积环 境,对沉积物的改造作用更强。

2 2 粒度组成与古气候环境

位于湖泊中心的沉积物粒度变化与进入湖泊的 物源粗细以及湖水环境对颗粒的再改造再分布作用 两个因素有关。对于大型深水湖泊,湖心沉积物所受 的风浪和湖流等引起的湖水环境的改造和再分布作 用小,对粒度变化的影响不及入湖径流变化引起的物 源输入作用大,因此可以认为位于湖心的沉积物粒度 值的变化主要取决于输入物源的粗细变化,大致反映 了水流搬运能力的强弱^[19]。当气候湿润时,降水较 多,径流较大,河流携带搬运能力较强,进入湖泊的颗 粒较粗;相反,气候干旱时,降水较少,径流较小,河流 携带搬运能力较弱,进入湖泊的颗粒较细。粒度的粗 细在一定程度上可以反映湖区降水的变化,因而具有 干湿变化的指示意义^[4910]。

图 4 乌伦古湖沉积物粒度分布 Fig 4 Distribution of sedimentary grain size in Wulungu Lake

乌伦古湖整个沉积岩芯剖面粒度组成以粘土和 粉砂为主,其中又以粉砂含量为主(图 4),整个剖面 的粉沙含量平均达到了 72.3 %,粘土含量达到了 18.7%,砂含量相对较少,平均为 9.0%。尽管整个 剖面中砂含量相对较少,但其波动明显,粒度分布曲 线上呈现 2处明显的高值,分别在 169~145 cm 和 132~99 cm。在这些层段中砂含量变化明显,沉积物 明显变粗。此外,剖面中粘土含量的变化趋势也很明 显,172 cm以下层段明显高于 172 cm以上层段,其含 量增加到 25 %~45%,有的甚至高达 50 %,沉积物 明显变细,由粉砂粒级变为粘土质粉沙粒级。

乌伦古湖沉积物粒度组成分布表明,全新世以来 大致经历了三个主要的气候演化阶段:225~197 cm (10 250~7 720 cal aBP)阶段,中值粒径较细,平均 为 18 7 µm,粗组分(砂)比重小,平均不足 7.0%,细 组分(粘土)含量高,平均达 37.8%,反映湖区降水较 少,气候干旱,湖泊水位较低,为浅湖相沉积。孢粉组 合^[29]以滨岸湿生植物(如黑三棱(*Sparganium*)、芦苇 等)为主,也表明此时采样点离岸边较近,水深较浅; 197~103 cm(7 720~2 800 cal aBP)阶段,中值粒径 较粗,平均为 28 9 µm,粗粒含量高,平均达 10 9%, 细颗粒明显减少,平均只有 19.6%,表明湖区降水丰富,气候湿润,湖泊水位较高,为深湖相沉积环境。孢粉组合转为以蒿藜为主,且蒿藜比值在 0.5~1之间,接近于 1,为荒漠草原至草原气候,说明降水较多,气候较上一阶段湿润^[20];103~0 cm (2800 cal aBP以来)阶段,中值粒径平均 26.5 μ m,粗颗粒含量平均为 7.8%,细颗粒含量平均为 12.8%,比第二阶段均有所下降,反映降水减少,气候变干,湖泊水位下降。孢粉组合仍以蒿藜为主,但蒿藜比逐渐减小,甚至减小到 0.5以下,为荒漠气候,表明气候逐渐偏干^[20]。

3 结论

通过对乌伦古湖沉积物频率曲线、粒度参数和粒 度组成的分析,可以得出以下初步结论:

(1) 乌伦古湖沉积物的频率曲线主要以正态单 峰型为主,说明流水作用是乌伦古湖沉积物的主要物 质来源和沉积作用力,岩芯下部间或出现的双峰和主 次峰型,说明沉积早期风力作用共同参与了物质搬运 和沉积。岩芯下部(225~197 cm)沉积物分选较差, 偏度和尖度较大,为浅水沉积环境;中部(197~103 m)分选由差变好,物质来源由复杂变单一,反映了 浅水沉积向深水沉积过渡的环境;上部(103~0 m) 分选较好,物质来源单一,中值粒径减小,反映了湖水 位的下降。

(2) 粒度组成反映的乌伦古湖全新世气候环境 演化主要有三个阶段: 10 250 ~7 720 cal aBR 湖区气 候干旱,降水较少,河流携带搬运进入湖泊的颗粒较 细,湖水水位较低,为浅水湖相沉积,受风沙活动和湖 水动力的改造作用影响较大; 7 720 ~2 800 cal aBP 气候湿润,降水较多,湖水水位较高,沉积颗粒较粗, 为深水湖相沉积,其中 7 720 ~5 780 cal aBP为浅水 至深水的过渡阶段,颗粒由细变粗; 2 800 cal aBP以 来,气候重又趋向干旱,降水减少,湖水水位降低,粒 度变细。

参考文献(References)

- Rhodes T E G asse F Lin Ruifen *et al* A late Pleistocene Holocene lacustrine record from Lake M anas Junggar (northern X in jiang western China). Palaeogeography Palaeoc lim a blogy Palaeoecobgy 1996 120, 105 ~ 121
- 2 吴敬禄、沈吉,王苏民,等.新疆艾比湖地区湖泊沉积记录的早全新世气候环境特征.中国科学(D辑),2003 33(6):569~575[Wu Jinka Shen Ji Wang Sum in *et al* Early Holocene climate and envi rom ent characters of koustrine records in A ibi area X in jiang Science in China(Series D), 2003 33(6):569~575]
- 3 Herzschuh U, Tarasov P, Wünnem ann B, et al. Hobcene vegetation and climate of the Alashan Plateau. NW. China: reconstructed from pollen data. Palaeogeography. Palaeoclimatology. Palaeoecology. 2004 211: 1~17
- 4 Celina C. Late Holocene lake sedimentology and climate change in southern Alberta Canada Quaternary Research 1998 49 96~101
- 5 陈敬安, 万国江, 黄荣贵. 云南程海沉积物粒度研究. 环境科学进展, 1999, 7(4): 76~82[Chen Jing'an Wan Guojiang Huang Rong gui Study of sediment particle sizes in Lake Chenhai Yunnan Prov ince A dvances in Environment Science 1999, 7(4): 76~82]
- 6 孙千里,周杰、肖举乐. 岱海沉积物粒度特征及其古气候环境意义. 海洋地质与第四纪地质,2001 21(1):93~95[Sun Qian li Zhou Jia Xiao Jule Grain size characters of Lake Daihai sed in ent and its paleoenvironment significance Marine Geo bgy & Quaternary Geo b gy 2001, 21(1):93~95]
- 7 赵强,王乃昂,程弘毅,等.青土湖沉积物粒度特征及其古环境意义.干旱区地理,2003 26(1):1~5[Zhao Qiang Wang Naiang Chen Hongyi *et al* Grain-size characters of Qinglu Lake sediments and its palaeoenvironment explanation A rid Land Geography 2003 26 (1):1~5]
- 8 刘兴起,王苏民,沈吉.青海湖 QH-2000钻孔沉积物粒度组成的古 气候古环境意义.湖泊科学,2003 15(2):112~117[Liu Xingq-i W ang Sum ing Shen Ji The grain size of the Core QH-2000 in Q inghai Lake and its implication for paleoclimate and paleoenvironment Journal

of Lake Sciences 2003 15(2): 112~117]

- 9 Peng Y J Xiao J I, Nakamuma T, et al Hobcene East Asian mon soonal precipitation pattern revealed by grain size distribution of core sediments of Dahai Lake in Inner Mongo lia of north central China Earth and Planetary Science Letters 2005 233, 467 ~ 479.
- 10 陈敬安, 万国江, 唐德贵, 等. 洱海近代 气候变化的沉积 物粒度与 同位素记录. 自然科学进展, 2000 10(3): 253~259[Chen Jing' an Wan Guojiang Tang Degui *et al.* Grain size and isotope records of modem climatic change in Ethai Lake Progress in Nature Science 2000 10(3): 253~259]
- 11 陈敬安,万国江,徐经意. 洱海沉积物 粒度记录与气候干湿变迁. 沉积学报,2000 18(3):341~345[Chen Jing'an Wan Guojiang Xu Jingyi Sediment particle sizes and the dry hum id transformation of the regional climate in Ethai Lake. A cta Sedimento logica Sinica 2000 18(3):341~345]
- 12 孙东怀, 鹿化煜, David Red 等. 中国黄土粒度双峰分布及古气候 意义. 沉积学报, 2000, 18 (3): 327~335 [Sun Donghui Lu Hua yu David Rea *et al.* Binode grain size distribution of Loess and its paleoclimate in plication Acta Sed in en tologica Sinica 2000, 18(3): 327~335]
- 13 胡刚, 王乃昂, 罗建育, 等. 花海湖泊古风成砂的粒度特征及其环境意义. 沉积学报. 2001 19(4): 642~647 [HuG ang Wang Na iang Luo Jianyu *et al* The grain size characteristics of aeolian sand and its environmental significance Acta Sedimentologica Sinica 2001, 19(4): 642~647]
- 14 王苏民,窦鸿身主编.中国湖泊志.北京:科学出版社,1998 346 ~347[Wang Sum in Dou Hongsheng China Lake Records Beijing Science Press 1998 346~347]
- 15 Stuiver M, Rein er P J Bard E et al NTCAL98 radiocarbon age calibration 24 000 ~0 calBP. Radiocarbon 1998 4Q 1041~1083
- 16 McManus J Grain size determination and interpretation h. Tucker M. ed. Techniques in Sedimento bgs. Oxford Backwell 1988 63 ~ 85
- 17 黄思静. 用 EXCEL计算沉积物粒度分布参数. 成都理工学院学报, 1999 26(2): 196~198[Huang Sijing Calculation of grain size distribution parameters of sediments by Microsoft Excel Journal of Chengdu University of Technology 1999 26(2): 196~198]
- 18 贾建军,高抒,薛允传.图解法与矩法沉积物粒度参数的对比.海 洋与湖沼 2000 33(6): 577~582[Jia Jianjua Gao Shu Xue Yongchuan Grain-size characters derived from graphic and moment methods a comparative study. O ceanologia et Linnologia Sinica 2000 33(6): 577~582]
- 19 孙永传,李惠生. 碎屑岩沉积相和沉积环境. 北京: 地质出版社, 1986. 65~81[Sun Yongchuan LiHuisheng Clastic rock sediment tary facies and sediment environment Beijing Geological Publishing House 1986. 65~81]
- 20 肖霞云,蒋庆丰,刘兴起,等. 乌伦古湖全新世以来高分辨率的孢 粉记录与环境变迁. 微体古生物学报, 2006 23(1):77~86[Xiao Xiayuna Jiang Qingfeng Liu Xingqi *et al* High resolution sponopol len record and environmental change since Hobcene in Wulungu Lake Acta Micropaleon tologica Sinica 2006 23(1):77~86]

Grain-size Characteristics of Wulugu Lake Sed in ents and Its Palaeoclimate and Palaeoenvironm ent Implication

JANG Q ing feng^{1 2 3} LIU X ing qi SHEN Ji

(1 Nanjing Institute of Geography and lim no bgy Chinese A cademy of Sciences Nanjing 210008
2. G raduate School of the Chinese Academy of Sciences Beijing 100039.

3 Geograph ical Science School N antong University Nantong Jiangsu 226007)

Abstract Located in the westerly and arid area W ulungu Lake is sensitive to climatic and environmental change The grain-size characteristics of its sediments indicate that the variations of precipitation hydrodynamics and wind ac tion and the lake level changes. The grain-size characteristics of W u lungu Lake sediment are analyzed in this paper including grain-size distribution, grain-size frequency curves and grain-size parameters. Based on the analysis of the characteristics of the grain-size frequency curves and grain-size parameters of the lake sediments two action and two depositions such as fluvial and windy action, low-lake deposition and high-lake deposition are discussed. The results indicate that the fluviation was the main action and source of sediment in W u lungu Lake. And the W ulungu Lake had experienced three main environmental evolution stages since Holocene. It was dry in 10250 ~7720 cal aBP, wet in 7720 ~ 2800 cal aBP, and dry again after 2800 cal aBP, respectively.

Keywords grain-size characteristics paleoclimate and paleaoenvironment Wulungu Lake