文章编号: 100020550(2005) 0420589207

柴达木盆地柴西南区碎屑岩储层形成的主控因素分析

马达德^{1,3} 寿建峰² 胡 勇³ 王少依² 徐 宁³

1(石油大学油气成藏机理教育部重点实验室 北京 102249)

2 (中国石油杭州地质研究所 杭州 310023)3 (中国石油青海油田分公司 甘肃敦煌 736202)

摘 要 运用大量的岩矿分析测试资料系统地研究了柴达木盆地柴西南区碎屑岩储层性质的控制因素,指出沉积环 境、岩石学特征、埋藏成岩史、异常高流体压力和盐湖水介质环境是控制储层成岩演化和储集性质的主要因素。该区 广泛发育的三角洲平原和前缘的分流河道及滨湖砂坪微相砂岩是优质储层发育的基本条件。储层碎屑组分中的塑性 颗粒含量和粒径是储层性质的重要控制因素;成岩作用是储层性质的决定性因素,其中压实作用对储层性质的影响最 大,胶结作用仅在局部地区成为重要的控制因素,溶蚀作用的影响是比较有限的。而储层的压实作用主要受储层岩 性、成岩胶结强度、埋藏史和地层流体压力等4个因素的控制。岩性是通过储层中塑性岩屑含量随粒径的变化以及不 同粒级的储层具有不同的抗压性等两方面表现出来的,成岩期胶结物的发育可以使储层的压实作用明显减弱,埋藏史 可以造成储层性质的较大差异,而高压地层流体压力可以有效地抑制压实作用的进行。

关键词 碎屑岩储层 主控因素 柴达木盆地

第一作者简介 马达德 男 1963年出生 博士研究生 油气地质勘查 中图分类号 P618 130 2 TE122 2 文献标识码 A

1 前言

柴达木盆地西部南区 (简称柴西南区)具有非常 优越的石油地质条件, 它紧邻盆地第三系红狮生油凹 陷和茫崖生油凹陷, 油源条件很丰富; 区域上为大型 的 S型走滑) 旋扭构造带, 构造应力集中, 有利于油 气聚集; 该区早期 (E_3) N₁)构造活动较强, 构造圈闭 形成较早, 而晚期构造活动又相对较弱, 有利于油气 保存。目前已发现的七个油田主要分布于柴西南区。 该区是柴达木盆地西部地区碎屑岩储层相对发育的 地区, 分布于七个泉、红柳泉、尕斯、乌南及东柴山等 地区近 2 @ 10^5 km²的区域, 纵向上碎屑岩储层主要发 育在下第三系渐新统下干柴沟组下段 (E_3^1)、上第三 系中新统上干柴沟组上段 (N_1^2)和下油砂山组 (N_2^1)。 但该区碎屑岩储层的储集性质在时空上变化很大, 成 为影响油气勘探的一个重要因素。

前人对柴西南区做过零星的沉积、储层研究工作。雷卞军等^[1]研究了柴达木盆地油砂山油田下油砂山组砂岩的成岩作用和孔隙结构特征,同时指出下油砂山组砂岩以原生孔隙为主。窦齐丰等^[2]研究了红柳泉油田储层沉积相,提出该区沉积相为曲流河三

角洲沉积、沉积微相对储层物性控制作用明显。沈安 江等研究了跃进地区 E_3^l 、 N_1 、 N_2^l 碎屑岩储层的基本 特征。邵文斌等^[3]研究了柴达木盆地尕斯断陷古近 系和新近系的沉积演化规律与储层的平面分布。党 玉琪等^[4]、金振奎等^[5]等对古近系和新近系的沉积 相以及相关储集体的基本特征作了分析。宋明水^[6] 等从柴达木盆地咸水沉积环境讨论了盐湖盆地对储 层的影响。以往这些研究侧重于柴西地区古近系及 新近系沉积相的研究,或者侧重于局部地区储层特征 的研究,而缺乏对柴西南区砂岩储层这一重要含油气 储层的整体研究。本文利用该区 60余口钻井的测井 曲线、岩屑录井和岩芯(岩芯长约 5 000 m)资料以及 大量的岩石铸体薄片、扫描电镜、孔、渗等岩矿测试资 料研究了该区作为主要含油气层系的下干柴沟组下 段、上干柴沟组上段和下油砂山组的砂岩储层特征、 第一次从区域上系统地进行了砂岩储层形成主控因 素的分析研究、指出了沉积环境、岩石学特征、埋藏成 岩史、地层流体压力和盐湖水介质环境是储层性质的 主要控制因素、从而有助于进一步地认识和预测柴西 南区砂岩储层的区域发育规律。

2 储层控制因素

2 1 沉积环境是决定储层性质的基础

不同沉积环境下形成的碎屑储集岩岩性特征的 较大差异使储层性质也存在明显差异。柴西南区下 干柴沟组下段 (E_3^1) 主要为三角洲前缘和滨湖沉积, 发育滨湖砂坪、三角洲前缘水下分流河道和河口坝等 储集体。表 1列出了区内下干柴沟组下段典型沉积 砂体的储层物性。从表 1中可见,排除胶结物的影 响,水下分流河道微相砂岩由于粒径较粗,储层物性 最好,平均渗透率可达 290 @0³Lm²;砂坪微相的储 层物性与岩石粒径密切相关,细砂级储层物性最好, 平均渗透率大于 100 @10⁻³Lm²,粉砂级储层在埋深 小于约 3800m的情况下孔隙度仍在 12% ~ 16% 之 间,但其渗透率小于 10 @10⁻³Lm²。

柴西南区上干柴沟组和下油砂山组 (N₁, N₂¹)主 要为三角洲平原、三角洲前缘及滨湖沉积, 发育三角 洲平原分流河道、三角洲前缘水下分流河道与河口坝 以及滨湖砂坪等储集体。表 2列出了区内 N₁- N₂¹典 型沉积微相砂体的储层物性, 同样可以看出, 在排除 胶结物影响的情况下,平原分流河道和水下分流河道 微相的储层物性最好,其平均渗透率最高可达 732 @ 10^{3} Lm²;砂坪微相的储层物性与岩石粒径密切相 关,细)中砂岩的储层性质较好,平均渗透率为 340 @ 10^{-3} Lm²,粉) 细砂岩储层的渗透率一般小于 100 @ 10^{-3} Lm²,而粉砂级储层的孔隙度为 12%~18%, 渗透率小于 10 @ 10^{-3} Lm²。河口坝微相的砂岩储层 的岩性以粉砂岩和细砂岩为主,储层物性与砂坪微相 相似。

2 2 岩石学特征是储层性质的重要控制因素

砂岩储层的岩石学特征对储层性质有重要的控制作用。在柴西南区,砂岩储层的碎屑组分和粒径对储层性质的控制作用更为明显。

2 2 1 砂岩碎屑成分对储层性质的影响

柴西南区第三系的储集砂岩主要为辫状河 三角洲及滨湖沉积体系,部分为冲积扇沉积。砂岩的 成分成熟度较低,富含火山岩、浅变质岩及陆源碳酸 盐岩等各种岩屑,其含量可达40%~60%。由于碎 屑组分中的塑性颗粒组分的抗压性能较弱,在埋藏成 岩过程中,这些塑性颗粒易发生塑性变形,因而不利

表 1 研究区下干柴沟组下段不同沉积微相的储层物性对比

井号	深度 /m	微相	岩性	孔隙度 /%	渗透率 /(@10 ⁻³ Lm ²)	胶结物含量 %	-
跃 110	3417~ 3465	砂坪	细砂岩为主	16.5	213 15	9. 5	
跃 110	3354~ 3417	砂坪	细砂岩	9. 1	2 46	20	
跃 24	3612~ 3686	砂坪	细砂岩	17.8	143 6	9. 2	
跃 24	3612~ 3686	砂坪	粉砂岩	16	69	4. 8	
跃 111	3324~ 3393	砂坪	细砂岩	18.3	116 3	< 10	
跃 111	3324~ 3393	砂坪	粉砂岩	15.3	8 3	310	
跃 12	$17\!87 \sim 1817$	水下分流河道	细)中)粗砂	16.4	290 4	11	
红 20	3274~ 3305	水下分流河道	粉)中粗砂	3. 01	0 2	18.8	

Table 1 Reservoir property comparison of different m icro-lithofacies of E_3^1 in the study area

表 2 研究区上干柴沟组和下油砂山组不同沉积微相的储层物性对比

Table 2 Reservoir property comparison of different m icro-lithofacies of N_1) N_2^1 in the study area

井号	深度 /m	微相	岩性	孔隙度 /%	渗透率 /(@10 ⁻³ Lm ²)	胶结物含量 /%
跃中 625	1761~ 1766	分流河道	中粗 - 砂砾岩	19.4	732 3	< 10
跃 54	1667~ 1756	分流河道	中粗 - 砂砾岩	17.8	518 9	/
乌 5	1445~ 1600	砂坪	粉砂岩	11.46	1 56	/
跃 634	1753~ 1856	砂坪	粉砂岩	15. 9	6 2	11
跃 62	$1902 \sim 1937$	分流河道	中粗) 砂砾岩	20	133 2	/
花 5242	896~ 911	水下分流河道	细)中)粗砂	20. 6	251 3	5. 0
花 5242	532~ 541	水下分流河道	细)中)粗砂	20. 5	252	7.5
花南 322	657. 3~ 659. 5	砂坪	粉)细砂	19. 3	35 5	< 10
花南 322	685. 4~ 687. 1	砂坪	细)中砂	21. 5	340 64	/
花南 322	674. 6~ 677. 0	水下分流河道	细)中)粗砂	18.8	616 2	/

于储层原生孔隙的保存。为了说明储层的塑性颗粒 组分对储层性质的影响程度,对埋藏深度位于 3 300 ~ 3 500 m、填隙物含量限于 6% ~ 10% 的尕斯地区下 干柴沟组下段粉细砂岩和细砂岩储层进行塑性颗粒 组分与储层性质的相关性分析,这里所指的塑性颗粒 组分为火山岩、浅变质岩及陆源碳酸盐岩等岩屑颗 粒。从储层的塑性颗粒含量与砂岩孔隙度和渗透率 之间的关系即可看出,随着储层中塑性颗粒含量的增 加,储层的孔隙度和渗透率均明显减小,尤其是渗透 率的下降幅度更大(图 1)。如储层塑性颗粒含量从 50%增至 5%时,储层孔隙度约下降 2 0%,而渗透 率下降了约 70@10⁻³Lm²。

2 2 2 砂岩粒径对储层性质的影响

储层的粒径大小对储层性质的影响主要反映在 两个方面,一是粒径越细,碎屑组分中的岩屑含量越 高(图 2),尤其是浅变质岩及陆源碳酸盐岩等塑性岩 屑的含量也就越高。因而细粒级储层在埋藏成岩过 程中更易于被压实、造成储层物性变差。同时储层的 粒径越细,其抗压性能也随之降低;二是在相同的压 实条件下、粗粒级储层的孔隙和喉道往往要大于细粒 级储层,因而粗粒级的储层性质(尤其是渗透率)往 往明显优于细粒级储层。统计结果表明、在埋藏深 度、填隙物含量以及溶蚀量等基本相似的情况下,粉 砂岩储层的平均孔隙度为 13 45%, 渗透率平均为 12 @10³Lm²,粉细砂岩的平均孔隙度为 14.4%,渗透 率平均为 39.9 $@10^{-3}$ Lm²; 细砂岩的平均孔隙度为 17. 7%, 渗透率平均为 186. 5 @10⁻³ Lm², 中细砂岩储 层平均孔隙度为 17.8%, 渗透率平均达 492 5 @10⁻³ Lm²。从不同粒级储层的孔隙度与渗透率的相关分 析表明、储层粒径与孔隙度及渗透率之间具有很好的 正相关关系,平均而言,储层粒径每增加一个粒级,孔 隙度约增加 3% ~ 4%, 而渗透率可增加 150 @10³~ $300 @10^{-3} Lm^{2}$

在储层孔隙度和深度关系图上,也可直观地反映 出储层粒级对其物性的影响(图 3)。在限定其它条 件下,相同埋藏深度的细砂岩储层的孔隙度比粉砂岩 高 2%~4%。

图 2 柴西南区下干柴沟组下段不同粒级储层的岩屑含量对比 Fig 2 Comparison of rock fragment contents for different grain2 size sandstone reservoirs in E¹₄, sou thwest of Q aidam Basin

2 3 成岩作用对储层性质具有决定性的影响

2 3 1 压实作用是碎屑岩储层原生孔隙减少的主要 原因

通过对大量铸体薄片的定量统计,在取得砂岩胶 结减孔量和溶蚀增孔量的基础上,可计算出储层的压 实减孔量。研究表明压实作用对砂岩储层的影响很 大,通常使砂岩储层的孔隙度减少 10% ~ 28%,其中 下干柴沟组下段储层由压实作用所损失的孔隙度平 均为 8 2% ~ 27.8%,上干柴沟组和下油砂山组的压 实减孔量平均为 9 5% ~ 24 9% (表 3)。

图 3 尕斯地区不同粒级的储层孔隙度随深度的变化

Fig 3 Relation between the porosity and burial depth of different grain2size sandstone reservoirs in Shax 2Gasi area

clastic reservoir in the study area								
层位	地区			孔隙	度 %			
	(井号)	原始	现今	胶结损失	溶蚀增加	压实损失	留注	
—— 下干 柴沟 组	七个泉	40	14 5	8	1 0	18. 5	胶结弱	
		40	7.3	26	1 5	8 2	胶结强	
	红柳泉	40	5	25	1	11	胶结强	
		40	14	12	1 6	15. 6	胶结弱	
	尕斯	40	15	13 7	1 7	13	胶结弱	
	砂西	40	22 2	8	2 1	11. 9	胶结弱	
	跃进东部	40	7.4	12 3	09	21. 2	胶结弱	
	东柴山	40	4	10	1 8	27. 8	胶结弱	
下油	尕斯	40	17.7	57	1 8	18. 4	胶结弱	
砂山		40	10 4	17.5	3 8	15. 9	胶结强	
》 组 二 干 沟	花土沟	40	23	65	1 7	12. 2	胶结弱	
		40	10	21 3	0 8	9.5	胶结强	
	乌南	40	13 5	8 3	1 6	19. 8	胶结弱	
		40	10 4	18 3	1 0	12. 3	胶结强	
	组甘油	40	95	7.4	1 8	24. 9	胶结弱	
组	继早准	40	45	16	15	21	胶结强	

表 3 研究区砂岩储层成岩作用对孔隙的影响

T ab le 3 R econ struction of porosity by d iagen esis on

柴西南区储层的压实减孔量在空间上有一定的 变化规律,东柴山地区的储层压实减孔量最大,跃进 东部地区次之,砂西和尕斯地区较小,而七个泉和红 柳泉地区的储层压实减孔量的变化较大 (见表 3)。 对相同或相似的埋藏深度、填隙物含量和岩石粒径的 情况下,东柴山地区的储层压实减孔量要显著偏大。

储层压实减孔量的大小主要受控于储层岩性、成 岩胶结强度、埋藏史和地层流体压力等 4个因素。在 该区储层岩性的影响是通过储层中塑性岩屑含量随 着粒径的变化而变化以及不同粒级的储层具有不同 的抗压性等两方面表现出来的(见上所述)。由于该 区储层的溶蚀量比较小,所以图 3中储层孔隙度随深 度的变化实际上反映了储层压实减孔量的变化,因而 图 3也说明了储层粒径对压实作用的影响。

成岩期 (尤其是成岩早期)胶结物比较发育的储 层,由于胶结物的支撑作用使得储层不易被压实,使 储层保持较小的压实减孔量,如七个泉地区下干柴沟 组下段钙质胶结发育的储层的压实减孔量仅 8 2%, 而钙质胶结弱的储层的压实减孔量达 18 5%,二者 之间相差为 10 3%,因此胶结物的支撑作用是造成 该区储层压实减孔量变化较大的主要原因;红柳泉地 区也有此现象 (见表 3)。

储层所经历的埋藏史不同可以造成储层性质的 较大差异。东柴山地区下干柴沟组下段储层的压实 作用普遍强烈、造成储集性质很差、与尕斯等地区相 同层位、埋藏深度和岩性的储层性质形成显著对比。 东柴山地区目前下干柴沟组下段的埋藏深度小于 2 500 m, 其孔隙度一般小于 6 0%; 而尕斯等地区目 前下干柴沟组下段储层的埋深约 3 300 m 其孔隙度 在 12%~ 18% 之间。其原因主要表现在两方面,一 是东柴山地区下干柴沟组下段在地质历史中曾深埋 过,从镜质体反射率推算该区曾经历过的最大埋深达 4 500 m左右; 二是东柴山地区下干柴沟组下段沉积 后的埋藏速度较快(该区下干柴沟组上段的沉积厚 度达1 290 m, N₁沉积厚度也有 800 m)。这种早期快 速埋藏的埋藏方式加快了成岩压实作用的进行^[7,8]。 而跃进地区第三纪一直处于稳定的沉降过程、目前的 埋藏深度也是其最大的埋藏深度,并且下干柴沟组下 段沉积后的埋藏速度较东柴山地区约小10倍(该区 下干柴沟组上段的沉积厚度约 600 m N₁沉积厚度约 400m)。上述两个因素导致东柴山地区下干柴沟组 下段储层成岩压实作用很强,碎屑颗粒之间呈线)凹 凸接触,储层压实减孔量达 27.8%;而尕斯地区下干 柴沟组下段储层的压实强度显著减弱,碎屑颗粒之间 呈点)线)线接触、储层压实减孔量仅 13%。

狮子沟、砂西、尕斯和跃进等地区下干柴沟组下 段储层中普遍发育地层流体高压 (图 4),对储层孔隙 的保存较为有利。从图 4可见, 尕斯地区下干柴沟组 下段的地层流体压力系数在 1 55~1 90之间, 其中 跃 110井的流体压力系数为 1 55; 往跃进地区逐渐 变小, 跃东 110井降为 1 35, 即前者的压力系数比 后者高约 0 20。在消除埋藏深度、岩性、填隙物含量 等影响因素的情况下, 跃 110井的储层压实减孔量要 比跃东 110井小 2 0%。由此可以推算得到地层流 体压力系数每增加 1.0 可保存约 7.5%~10%的储 层孔隙度。

图 4 柴西南区下干柴沟组下段压力系数等值线图 Fig 4 Diagram of pressure coefficient isopach in E_3^1 Formation

2 3 2 胶结作用是局部地区碎屑岩储层性质变差的 重要因素

柴西南区碎屑岩储层中的成岩自生矿物(主要 为碳酸盐、硬石膏和沸石等)比较发育,局部地区十 分发育并导致储层孔隙的大量减少。图 5 6 7 8是 砂西和红柳泉地区储层胶结物含量与储集性质之间 的相关图,反映了成岩胶结作用对储集性质的影响, 即随着储层中胶结物含量的增加,储层孔隙度和渗透 率均明显下降。

据岩石铸体薄片的鉴定统计,该区由胶结作用所 减少的孔隙度在 6 % ~ 20% 之间,局部地区可达 25% ~ 35%。如红柳泉地区下干柴沟组下段储层的 储集性质普遍很差,其主要原因是储层的硬石膏胶结 作用很强烈,硬石膏含量一般在 15% ~ 28% 之间,导 致储层孔隙度的大量减少;而当储层的硬石膏胶结物 含量降低时,储层性质得到相应改善。

图 5 砂西地区上干柴沟组和下油砂山组储层 胶结物含量与孔隙度相关图

Fig 5 The cement contents of the reservoirs and its relation to properties in N_1) N_2^1 of Shaxi area

图 6 砂西地区上干柴沟组和下油砂山组储层 胶结物含量与渗透率相关图

Fig 6 The comment contents of the reservoirs and its relation to permeability $in N_{1}$ of Shaxi area

图 7 红柳泉地区下干柴沟组下段储层胶结物 含量与孔隙度相关图

F ig 7 The cement contents of the reservoirs and its relation to properties in E_3^1 of H ong luQuan area

图 8 红柳泉地区下干柴沟组下段储层胶结物 含量与渗透率相关图

Fig 8 The cement contents of the reservoirs and its relation to permeabilities in E_3^1 of H ongliu Quan area

2 3 3 溶蚀作用对储层孔隙度的增加比较有限

据岩石铸体薄片的观察和统计表明, 柴西南区砂 岩储层中的溶蚀作用比较常见, 被溶物质为长石、岩 屑碎屑颗粒以及碳酸盐胶结物。长石和岩屑碎屑颗 粒的溶蚀作用所增加的孔隙量比较有限, 一般小于 2 0%; 以碳酸盐类为主的胶结物的溶蚀作用分布不 均, 碳酸盐胶结发育层段 (特别是泥晶碳酸盐胶结物 发育的层段)的碳酸盐的溶蚀作用往往较强, 溶蚀增 加的孔隙量可达 3% ~ 5% 左右, 如花土沟地区花南 62323井深度为 1 148 16 m的含灰岩屑粉) 细砂岩 的泥晶碳酸盐的溶蚀量达 3 5%。

3 结论

沉积环境是储层性质的基本控制因素,三角洲前 缘水下分流河道微相的储层性质最好,砂坪微相的细 砂级储层次之。岩石学特征是储层性质的重要控制 因素,它主要反映在碎屑组分和粒径上。储层碎屑组 分中的塑性颗粒组分的抗压性能相对弱,在埋藏成岩 过程中易发生塑性变形,不利于储层粒间孔隙的保 存;储层的粒径越细,其塑性岩屑含量越高、抗压性能 越低,从而储层的压实作用也越强。

成岩作用是储层性质的决定性因素,其中压实作 用对储层性质的影响最大,胶结作用仅在局部地区成 为十分重要的控制因素,而溶蚀作用的影响是比较有 限的。因此在该地区研究储层压实作用的控制因素 显得比较重要,它主要受储层岩性、成岩胶结强度、埋 藏成岩史和地层流体压力等4个因素的控制。储层 岩性的影响是通过储层中塑性岩屑含量随着粒径的 变化而变化以及不同粒级的储层具有不同的抗压性 等两方面表现出来的;成岩期胶结物的发育可以使储 层的压实作用明显减弱;经历不同埋藏成岩史的储层 可以造成储层性质的较大差异;而高压地层流体压力 可以有效地抑制储层的压实作用。

参考文献 (R eferences)

- 1 雷卞军, 刘怀波, 张昌民, 林克湘. 柴达木盆地油砂山油田下油砂山组砂岩成岩作用和孔隙结构. 江汉石油学院学报, 1995, 17(1):
 8~15 [Lei Bian jun, Liu Hu abo, Zhang Changn in, Lin K exiang Dia2 genes is and pore structure of Lower You shash an sandstone in Yousha& han Oilfield Q aidam Basin. Journal of Jianghan Petroleum In stitute 1995, 17(1): 8~15]
- 2 窦齐丰,彭仕宓,黄述旺,等. 柴达木盆地红柳泉油田储层沉积相研究. 西安石油学院学报, 2003, 18(1): 4~7[Dou Qifeng, Peng Shini Huang Shuwang et al Study on sedimentary facies of Upper Sand Formation of reservoir in Hong liuquan Oilfield, Qaidam Basin Journal of X ican Petroleum Institute (Natural Science Edition), 2003, 18(1): 4~7]
- 3 邵文斌,寿建峰. 柴达木盆地尕斯断陷古近系)新近系的沉积演 化规律与储集体分布. 石油大学学报(自然科学版), 2003, 27(6): 12~16[ShaoWenbin, Shou Jianfeng Sedimentary evolution and re& ervoir distribution of the Tertiary in Gasi Faultsag Qaidam basin. Jou2 nal of the University of Petroleum, China (Edition of Natural Sc2 ence), 2003, 2(6): 12~16]
- 4 党玉琪, 尹成明, 赵东胜. 柴达木盆地柴西地区古近纪与新近纪沉积相. 古地理学报, 2004, 6(3): 297~306[Dang Yuqi Yin Chengming Zhao Dongsheng Sedimentary facies of the Paleogene and New gene in westem Qaidam Basin. Journal of Paleogeography 2004, 6 (3): 297~306]
- 5 金振奎,张响响,邹元荣,等.青海砂西油田古近系下干柴沟组下部 沉积相定量研究.古地理学报, 2002, 4(4): 99~107[Jin Zhenku,i Zhang Xiangxiang Zou Yuanrong Quantitative study on sedimentary facies of the lower part of Xiagancha igou formation of Paleogene of Shax i oilfield in Qadam Basin Journal of Palaeogeography, 2002, 4(4): 99~ 107]
- 6 宋明水,陈云林. 论/反转0))) 咸水盆地的油气勘探. 油气地质 与采收率. 2004. 11(6): 24~26[Song Mingshui, Chen Yun lin Dia cussion on oil& gas exploration of reversa 2sa line bas in Petroleum Ga obgy and R ecovery Efficency, 2002, 11(6): 24~26]
- 7 寿建峰, 斯春松, 朱国华, 塔里木盆地 库车坳陷下侏 罗统砂岩储层 性质的 控制因素. 地质论评, 2001, 47(3): 272~276[Shou Jian2 êng Si Chunsong Zhu Guohua et al Controlling factors of the prop2 erties of the Lower Jurassic sandstone reservoirs in the Kuqa Depre& sion, Tarim Basin. Geobgical Review, 2001, 47(3): 272~276]

Analysis of the Main Controlling Factors on the Formation of Clastic Reservoirs in the Southwestern Area of the Qaidam Basin

MA Da2de^{1,3} SHOU Jian2feng² HU Yong³ WANG Shao2y² XU N ing³

1 (Key Laboratory of Mechanism of Petroleum Reservoir Formation of the Educational Department

Petroleum University, Beijing 102249) 2(Hangzhou Institute of Petroleum Geobgy Hangzhou 310023)

3(Q ingha i Branch of China Petroleum Corporation, D unhuang G an su 736202)

Abstract Based on a great deal of analytical data of rock and mineral discussed the controlling factors on clastic rock reservoir property in the southwest area of the Q a ilam basin are the sedimentary environment lithological charac2 teristics buried history unusual high fluid pressure salt lake environment were main factors deciding reservoir diage2 netic evolution and reservoir property. The wide ly developed sandstones of the shore sand p latform, the delta plain and delta front are a basic condition for the development of excellent reservoirs. The content and size of the plastic grains in the reservoir clasts are important factors controlling the reservoir property. Diageneses are a crucial factor of reser2 voir property in which consolidation heavily a ffected reservoir property comentation was on ly an important controlling factors is controlling the influence of dissolution was weak. Consolidation of res2 ervoir is controlled by four factors, i.e., lithobgical characteristics, strength of diagenetic cementation, buried histo2 ry and strata fluid pressure of reservoir with different grain size. Development of diagenetic cements weak ened consolid dition of reservoir buried history differed reservoir property and high fluid pressure effectively restrained consolidation to reservoir buried history differed reservoir property and high fluid pressure effectively restrained consolidation of reservoir buried history differed reservoir property and high fluid pressure effectively restrained consolidation of reservoir buried history differed reservoir property and high fluid pressure effectively restrained consolidation of reservoir buried history differed reservoir property and high fluid pressure effectively restrained consolidation of reservoir buried history differed reservoir property and high fluid pressure effectively restrained consolidation of reservoir buried history differed reservoir property and high fluid pressure effectively restrained consolidation of reservoir buried history differed reservoir

Keywords clastic reservoir, main controlling factors, Qaidam basin