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Abstract The present contribution is concerned with the application of tracer methods to marine sediment
dynamics, in terms of material source identification, sediment transport rate calculations and the problem of
a umnversal theoretical framework. For the tracing of material sources, mixing models that are originally es—
tablished for river basin systems should be modified to fit marine environments; in particular, changes in the
fingerprinting particles during transport must be considered. In the research field of sediment transport rate
determination, artificial tracers have been used, on the basis of the spatial integration method (SIM ), the
time integration method (TIM), or the continuous injection method ( CIM ), with the SIM being the most
popular. In the application of these methods it is crucial to define the centroid movement and the depth of
disturbance. In the case of natural tracers, these methods are no longer applicable because the centroid move—
ment cannot be defined. Nevertheless, in some circumstances, natural tracers can provide information on
transport, on the basis of a mathematical model. Further investigations are required in the future to establish
a universal theoretical framework for both artificial and natural tracers for sediment transport studies, in
which solutions must be found to the problems associated with the differential dynamic behaviors of the trac—
er and the bulk sediment, deposition rates and the depth of disturbance as functions of the temporal scale,
and sediment dispersive processes.

Key words marine sediment transport, source tracing, artificial tracer experiments, natural tracer method,
universal theoretical framew ork

( Continued from page 37)

southern Eurasian margin could have been active, leading to a series of back-arc rift basins. Some basins may
have ultimately been floored by oceanic crust while others remained underlain by continental or transitional
basement, much like the present western Pacific margin. There is no mechanism and no paleogeographic and
topographic evidence to support the view that the Tibetan plateau had intensely been elevated by the end of
Early Cretaceous time.

Key words Gangdese magmatic arc, Early Cretaceous, back-arc rifting, southern margin of the Eurasian

continent, tectonic reconstruction



