镜质体反射率在重建盆地古地温中的应用

一中国东部、西部中、新生代沉积盆地古地温特征

邹华耀 吴智勇

(江汉石油学院地质系 湖北荆州 434102)

提 要 在总结前人关于镜质体反射率重建盆地古地温方法的基础上,讨论了各方法的理论基础、应用效果及 其局限性。选择理论上与实际应用效果较好的 Easy R。方法,重建了东部苏北盆地、辽河盆地和西部柴达木盆 地、三塘湖盆地典型探井的古地温演化模式。结果表明我国东部中、新代大陆架谷型盆地,具有比西部中、新生代 前陆型盆地更高的古地温梯度。中生代末至第三纪早期,东部盆地的古地温梯度大于4.0℃/100 m,而西部盆地 的在3.0~2.5℃/100 m。我国中、新生代沉积盆地古地温普遍具有从高到低的演化趋势,而柴达木盆地则相反, 古地温梯度自早第三纪的2.5℃/100 m 升高到现今的3.0℃/100 m。这几个盆地古地温的成功恢复,证实 Easy R。方法对热演化各异的不同类型盆地古地温恢复具有广泛的适应性,而且,准确性高。过去常用的 TTI-R。方 法过高地计算了有机质的成熟度,使重建的古地温偏低。

关键词 镜质体反射率 古地温 Fasy R。中国 东部 西部 沉积盆地 第一作者简介 邹华耀 男 33岁 硕士 石油地质学与有机地球化学

含油气盆地古地温重建是综合盆地分析与模拟 烃源岩演化的关键。东部辽河盆地、苏北盆地及西部 柴达木盆地都是我国重要的含油气盆地,新疆三塘 湖盆地则是西部新的探区。然而对这些盆地古地温 尚未进行过深入的研究。本文利用这几个盆地中典 型探井丰富的镜质体反射率数据,选用理论上可靠、 实际应用效果较好的 Easy R。方法^(1,2),通过正演模 拟⁽³⁾,重建了这几个盆地典型探井的古地温演化模 式。通过模拟结果对比,讨论了TTL_{LOP}-R。方法在重 建古地温中的局限性。

沉积盆地古地温恢复的方法很多,如流体包裹体、磷灰石裂变径迹等。但是,镜质体反射率测定通常比较简便、准确,一般盆地勘探早期,镜质体反射 率资料就较多。本工作的另一个目的是寻找一种较 适合的镜质体反射率模式恢复盆地古地温,使得这 一模式能得到推广。

1 镜质反射率重建古地温方法评述

镜质体反射率,作为热成熟度的指标,已在盆地 综合分析和油气勘探中得到了,广泛的应用^(4~6)。在 过去的 20 年中,应用镜质体反射率重建盆地古地温 已提出了许多种方法。古地温恢复途径分二种:一种

收稿日期:1997-05-24 收修改稿日期:1997-11-10

为正演拟合,即假设古地温演化模式,通过 R。模型 计算出 R。值,然后与测定 R。值对比,直到吻合,最 后假定的古地温模式就代表实际古地温模式;另一 种是用实测 R。值,通过 R。模型直接逆演得到古地 温。然而,各种方法应用的效果如何?就看它如何理 解镜质体的形成过程,以及此过程同时间、温度及压 力等因素之间的关系。根据 R。模型的基本原理可将 这些方法归纳为以下几类。

1.1 单函数关系法

此类方法包括 TTI-R。关系方法及 log R。-深度 关系方法^(4,7)。TTI-R。方法恢复盆地地古地温已得 到广泛的应用⁽³⁾,此方法是建立在一系列 TTI 值与 R。对比的基础之上。在实际应用中,此方法在低成 熟层序(R。≪0.9)取得了较好的效果⁽²⁾。但是,TTI 值计算方法建立时,是用现今的地温代替地史时期 较高的古地温,因而低估了有机质的成熟度,造成了 TTI 指数的系统偏低⁽³⁾。另一方面,TTI 指数以温度 每增加 10 ℃反应速度加快1 倍的假设前提在有机 质的整个演化阶段,甚至在生油窗范围内并不可靠。 因此,在实际应用中,TTI-R。方法计算的有机质成 熟度与恢复的古地温通常出现偏差^(2,8,9)。log R。-深 度关系方法与 TTI-R。方法在函数关系及实际应用 中,具有相似的效果和局限性¹¹⁰。

1.2 经验性的逆演方法

把镜质体成熟反应作为最大古地温或最大古地 温和有效受热时间的函数^[11~13]。这种方法的缺陷在 于,实际应用中,最大古地温及有效受热时间难以确 定。理论上,此类方法认为有机反应不符合一级动力 学反应,而是遵循更高级的反应,即一旦超过其活化 能,反应就可以在较短的时间内完成。这种方法在理 论上与时温指数相悖,只被少量人所接受[14~16]。

1.3 经验性的化学动力学方法

把镜质体成熟反应作为一个阿仑尼斯(Arrhenius)一级化学反应^[9,10]。此类方法用一个视活化能 的单一反应模拟复杂的镜质体成熟反应。因此,不仅 在模拟条件和成熟度模拟范围都受到限制,而且模 拟结果有较大偏差⁰⁷。

1.4 化学动力学方法

此方法简称为 Easy R。方法¹¹。把角质体成熟 反应作为一系列平行的阿仑尼斯一级反应,克服了 第3类方法的缺陷,不是用单一的一个视活化能,而 是用活化能的一个分布模拟角质体成熟的所有反 应,包括脱H₂O,CO₂,CH₄及更大分子量烃类的裂 解。因此,可以较完整的大范围模拟镜质体的成熟反 应(R.:0.3~4.5)。应用结果表明,Easy R. 方法,不 仅模拟结果比其他方法更准确,而且,模拟适应于加 热速度从实验室条件(1℃/week)、岩浆侵入(1℃/ d) 到各种地质环境(10 ℃/ha~1 ℃/Ma)^(1,2)。

Easy R。方法重建古地温方法概述 $\mathbf{2}$

2.1 Easy R。方法重建古地温的步聚

利用 Easy R。方法重建古地温,通常可分为以 下几个步聚:①选择盆地中一口具有丰富的 R。资料 的典型探井为对象,通过压实校正和剥蚀厚度计算 恢复单井地层的埋藏史[18,19];②假设一古地温梯度 随地质年代变化的模式,结合埋藏史算得生油岩经 历的古地温模式;③根据古地温模式通过 Easy R。 模型计算生油层的成熟度 R。值⁽¹⁾;④用实测的生油 层的 R。值与计算的 R。值进行对比,通过反复修改 假设的古地温模式及反复计算 R。值,使计算的 R。 与实测的 R。吻合。最后选定的古地温模式可代表古 地温梯度。

2.2 Easy R。模型化学动力学参数的确定

要反应,即镜质体早期的脱H₂O 与 CO₂,以及随后

CH₄和更大分子量烃类的裂解。根据前人研究成果, Bumharn 等^[14]将这4个反应的活化能分布归纳为 表1,为了便于计算,他们将这4个反应的化学动力 学参数归纳为表 2¹¹,即把镜质体反射率的反应看 作若干个相同频率因子但活化能不同的平行反应。

表 1 镜质体反射率 4 个成熟反应的动力学参数 Table 1 Kinetic constants used in the

compositional model of vitrinite maturation

活化能/Jm01 ⁻¹	i	活化能分	布特征/%	5
(×4.1868×10 ³)	H ₂ O	CO ₂	CH,	CH4
38	5			
40	10			
42	15	5		
44	20	15		
46	20	25	5	
· 48	15	25	10	
50	10	15	20	7
52	5	10	30	12
54		5	20	14
56			10	13
58			5	12
60				11
62				9
64				7
66				5
68				4
70				3
72				2
74				1

频率因子:CH_{*}:2×10¹³S⁻¹;H₂O,CO₂,CH₄:1×10¹³s⁻¹.

2.3 Easy R。计算方法

2.3.1 镜质体反射率的成熟反应用一级阿仑尼斯 反应来描述:

d $w/d t = -kw, k = A \exp(-E/RT)$ (1)式中:w 为未反应的物质,k 为速度常数,E 为活化 能,R为气体常数,T为绝对温度,A为频率因子。 2.3.2 对于镜质体反射率平行反应中的某一个反 应 t 时刻应描述为:

> d w /d $t = -w_i A \exp[(-E_i/RT_{(i)})]$ (2)

Easy R。模型将镜质体的成熟反应分为4个主 2.3.3 对平行反应中某一个反应所剩下的未反应 物的量:

$$w_i = w_{oi} - \int_0^t [\mathrm{d} \ w_i / \mathrm{d} \ t] \mathrm{d} \ t \tag{3}$$

2.3.4 对于镜质体整个平行反应,已发生反应的反应物百分含量F:

$$F = 1 - w/w_0 = 1 - \sum_i f_i(w_i/w_a)$$
 (4)

式中:wo 为反应物的初始浓度。

2.3.5 Easy R_o的求法是根据反射率与镜质体的组成之间的关系推导出的⁽²⁰⁾:

 $R_{\rm o}(\%) = \exp(-1.6 + 3.7F)$ (5)

表 2 镜质体反射率化学动力学参数

Table 2Activation energy distribution andfrequency factor used in the easy R_o model

活化能/Jmal ⁻¹ (×4.1868×10 ³)	活化能分布/%	
34	3	
36	3	
38	4	
40	4	
42	5	
44	5	
46	6	
48	4	
50	4	
52	7	
54	6	
56	6	
58	6	
60	5	
62	5	
64	4	
66	4	
68	2	
70	2	
72	1	

频率因子:1×1013s-1.

从表 2 中可以看出, F 的变化范围为 0~0.85, 因此, Easy R。模拟值的变化范围为 0.2%~4.7%, 应用研究表明,利用已知的热历史,通过上述模拟计 算的 Easy R。值与实测值吻合^[17]。因此,本方法选择 了这一模式来研究我国东、西部盆地的古地温。

- 3 中国西部柴达木盆地、三塘湖盆地 古地温特征
- 3.1 柴达木盆地
- 3.1.1 地质背景

柴达木盆地是由元古界、古生界为基底组成的

中新生代沉积盆地。自印支运动之后形成了盆地的 雏形,产生了一系列的侏罗一白垩系的断陷盆地,接 受了侏罗系含煤建造及侏罗系一白垩系的虹色河湖 相沉积。自渐新世开始喜山运动初期使青藏高原整 体上升,而柴达木盆地则整个下沉,接受了直到上新 世的巨厚河湖相砂岩连续沉积,形成了西部的沉积 中心;中新世喜山运动的第二期对盆地西部有着显 著的影响,部分地区上升露出湖面遭受剥蚀,大部地 区处于稳定状态,而此时的沉积中心向东迁移。从晚 第三纪到第四纪初,喜山运动的强烈挤压,柴达木盆 地西及东北部的新生代沉积盖层发生强烈的褶皱, 盆地东部沉积中心急骤下沉并东移到三湖地区,沉 积了厚度1000 余米的第四纪河湖相地层,晚更新 世开始回返,逐步形成现今的面貌⁽²¹⁾。

3.1.2 盆地古地温重建结果与分析

柴达木盆地西部茫崖拗陷是该盆地主要的产油 区,本文选择该拗陷狮 20 井与切1 井为对象恢复古 地温梯度(表 3A,3B 和表 4A,4B)。柴达木盆地茫崖 拗陷现今的地温梯度为 2.8~3.0 ℃/100 m⁽²⁰⁾。古 地温重建的结果表明,柴达木盆地西部茫崖拗陷具 有较低的古地温梯度,自始新世的 2.3~2.5 ℃/100 m,演化至今的 2.8~3.0 ℃/100 m,这种新生代偏 低的地温梯度,主要与该盆地具有较大的莫霍面深 度(50 km)有关⁽²¹⁾,地温梯度自始新世以来呈上升 趋势的原因,可能与该区广泛发育的基底同生逆断 层有关⁽²²⁾,地下热水沿深部断裂上涌可形成地温高 异常区^(21,23)。有关该区地温梯度升高趋势的原因还 有待于进一步的研究。

表 3A 狮 20 井地层分层与古地温梯度

Table 3A Stratigraphy and paleotemperature gradient in the Shi-20 well

层号	地层及时代 (Ma)	底界深度/m	古地温梯度模式/℃/100 m
1	下干柴沟组(55)	4 410	2.5
2	上千柴沟组(42)	3 947	2. 7
3	下油砂山组(24.6)	2 816	2.8
4	上油砂山组(15)	1 220	2.8
5	狮子沟组 (5.1)	760	2. 9
			3.0(现今)

表 3B 狮 20 井计算的 Easy R。与实测 R。对比 Table 3B Correlation of the calculated R。(Easy R。) values to the measured ones in the Shi-20 well

埋深/ m	实测 ₨ /%	Easy R _o /%
2 445	0. 60	0.60
2 890	0. 80	0.78
3 085	0. 86	0.83
3 240	0. 87	0.86
3 575	0. 92	0.94
3 690	0. 98	0.94
4 175	1.1	1.2

表 4A 切 1 井地层分层与古地温梯度 Table 4A Stratigraphy and paleotemperature gradient in the Qie-1 well

层号	地层及时代 (Ma)	底界深度/m	古地温梯度模式(℃/100m)
1	下干柴沟组(55)	2 071	2. 3
2	上干柴沟组(42)	1 174	2.3
3	下油砂山组(24.6)	760	2.6
4	上油砂山组(15)	662	2.6
5	獅子沟组(5.1)	50	2.7
			2.8(现今)

3.2 三塘湖盆地

3.2.1 地质背景

三塘湖盆地是一个长期发育的叠合盆地。盆地 基底为中上奥陶统一中下石炭统,为一套中酸性、中 基性火山岩、火山屑岩与滨、浅海相一海陆交互相碎 屑岩及少量碳酸盐岩沉积。盆地沉积盖层为中上石 炭统一新生界,以湖泊、沼泽和河流碎屑岩沉积为 主。

values to the measured ones in the Qie-1 well

埋深/m	实测 R。/%	Easy R _o /%
1 050	0. 59	0.57
1 150	0.68	0.66
1 250	0. 79	0.75
1 550	0. 92	0.87
1 650	0.87	0.90
1 750	0. 91	0.94

三塘湖盆地晚石炭世至二叠纪,在盆地基底及 周边发育许多大的断裂,这个时期火山活动强烈,火 山岩分布广泛。三叠纪早期,全区抬升,缺失了早三 叠世地层,中、晚期三塘湖盆地各坳陷被"填平补 齐",形成了中、晚三叠世的河流、滨浅湖相沉积。侏 罗纪在准平原化的基础上形成了一个开阔湖盆,西 与准噶尔,南与吐哈盆地连为一体,沉积了一套以河 流、湖沼相含煤地层。白垩纪早期地壳上升,盆地范 围缩小,晚期全面抬升,缺失上白垩统。新生代受喜 山运动的影响,盆地地形高差进一步加大,沉积了一 套类磨拉石的河湖相红色砂砾岩。

3.2.2 盆地古地温重建结果与分析

三塘湖盆地中生界形成了几套富含有机质的湖 相暗色泥岩与湖沼相含煤系地层,具有一定的生烃 潜力,是该盆地的主力烃源岩。本文选择该盆地中生 界潜在烃源岩最发育的条湖凹陷两口探井 TC1 井 与 T2 井为对象,恢复其古地温。结果见表 5A、5B 和 表 6A、6B。两口井恢复的古地温演化史相同。从中、 晚三叠世的 3.5 ℃/100 m 演化到至今的 2.2 ℃/ 100 m。这一结果与相邻的准噶尔盆地古地温演化 具有相似的特征。二叠纪至三叠纪为山前坳陷期,地壳 活动逐渐减弱,地壳厚度增大,古地温梯度为 3.5 ℃/100 m。侏罗纪为地台期,构造活动微弱,地壳厚 度进一步加大,热流值降低,古地温为 2.7~2.8 ℃/ 100 m。白垩纪至今,受燕山一喜山运动的影响,盆 地抬升和剥蚀地温梯度为 2.2 ℃/100 m。

表 5A TC1 井地层分层与古地温梯度

 Table 5A
 Stratigraphy and paleotemperature

gradient	ın	tne	IC-I	well	
	_				

层号	地层及时代 (Ma)	底界深度/m	古地温梯度模式/℃/100m
1	T ₂₊₃ (240)	2 813	3. 5
2	J ₁ (208)	2 625	3. 3
3	J _{2+,3} (180)	2 235	3. 1
4	K1(135)	950	2.8
5	E(65)	202	2.5
6	Q(2)	52	2.2

Table 5BCorrelation of the calculated R_0 (Easy R_0)

values to the measured ones in the TC-1 well

埋深/m	实测 R。/%	Easy R _o /%
2 813	0. 86	0.90
2 625	0. 75	0.82
2 235	0. 62	0.70
2 000	0.54	0.60
1 500	0. 52	0.55

表 6A T2 井地层分层与古地温梯度 Table 6A Stratigraphy and paleotemperature gradient in the T-2 well

层号	地层及时代(Ma)	底界深度/m	古地温梯度模式/℃/100m
1	T ₂₊₃ (240)	2 644	3.5
2	J1(208)	2 481	3.3
3	J ₂₊₃ (180)	1 444	3.0
4	K ₁ (135)	636	2.7
5	E(65)	121	2.5
6	Q(2)	70	2.2

表 6B T2 井计算的 Easy R。 与实测 R。 对比

Table 6B Correlation of the calculated R_o (Easy R_o) values to the measured ones in the T-2 well

	实测 R。/%	Easy R _o /%
2 644	0. 71	0.72
2 481	0.64	0.65
1 972	0.55	0.56
1 500	0. 52	0.53
1 300	0. 45	0.48

4 中国东部苏北盆地、辽河盆地古地 温特征

- 4.1 苏北盆地
- 4.1.1 地质背景

苏北盆地是一个以第三系沉积为主体的中、新 生代断陷一坳陷型沉积盆地。晚白垩世基底断裂活 动力强烈,沉积了一套洪积一河流相或湖相地层。古 新世,盆地整体沉降,形成了一套以湖相泥岩、泥灰 岩及砂岩为主的地层,构成了苏北盆地烃源岩主要 发育阶段。始新世早期发生了吴堡运动,断块抬升作 用使得凹陷分割性更加突出,形成了以粗碎屑岩为 主,砂、泥岩为次的河流相地层。始新世晚期的三垛 运动,使盆地普遍遭受抬升和剥蚀。晚第三纪与第四 纪仅部分地层接受了河流一湖泊相砂、泥岩沉积。

表 7A Sh1 井地层分层与古地温梯度

Table 7A	Stratigraphy and paleotemperature
	gradient in the Sh-1 well

层号	地层及时代(Ma)	底界深度/m	古地温梯度模式/℃/100m
1	阜宁组(56)	2 646	3. 6
2	代南组(51)	1 855	3. 5
3	三垛组(45)	797	3.4
4	盐城组(24.6)	384	3. 2
5	东台组(2)	101	3.0(现今)

表 7B	Sh1 井计算的 Easy R。 与实测 R。 对比
Table 7B	Correlation of the calculated R_0 (Easy R_0)
-	

values to the measured ones in the Su-1 wert			
	实测 R₀/%	Easy R _o /%	
1 890	0.55	0. 53	
2 123	0.60	0.57	
2 374	0.66	0.64	
2 381	0.67	0.64	
2 464	0.68	0.66	
2535	0.69	0.68	
2641	0.71	0.71	

4.1.2 盆地古地温重建结果与分析

本文选择苏北盆地北部盐阜坳陷的洪泽凹陷 Sh1和ZC1井为对象,恢复盆地的古地温。结果见表 7A、7B和表8A、8B。两口井古地温梯度自古新世以 来呈降低趋势,从3.6~4.0℃/100 m 降到现今的 3.0℃/100 m。古地温梯度降低的演化趋势主要在 于,苏北盆地形成过程中,晚白垩世至始新世岩石圈 拆离伸展变薄,软流圈上涌,在壳下岩石圈形成一热 异常体,它的热衰减会向壳内输入较多的热量。使早 第三纪具有较高的古地温。随着这一热异常体热衰 减过程热量的减小。使上部沉积盖层地温降低。目 前,苏北盆地的地幔热流高,可能反映这个衰减过程 还在继续^[24]。

表 8A ZC2 井地层分层与古地温梯度 Table 8A Stratigraphy and paleotemperature gradient in the ZC-2 well

层号	地层及时代(Ma)	底界深度/m	古地温梯度模式/℃/100m
1	阜宁组(56)	1 364	4.0
2	代南组(51)	846	3.8
3	三 垛组 (45)	缺失	3. 7
4	盐城组(24.6)	368	3.4
5	东台组(2)	100	3.0(现今)

表 8B ZC2 井计算的 Easy R。 与实测 R。 对比

Table 8B Correlation of the calculated R_0 (Easy R_0) values to the measured ones in the ZC-2 well

	实测 R。/%	Easy $R_{o}/\%$	
886	0. 64	0.42	
918	0. 47	0.43	
1 094	0.48	0.45	
1 174	0.50	0.46	
1 208	0.51	0.48	

4.2 辽河盆地

4.2.1 地质背景

辽河盆地属于中、新生代发育起来的复合型盆 地。辽河盆地属于大陆裂谷盆地,是渤海湾裂谷系的 一个分支,大地构造位置处于华北板块东北部。辽河 盆地发育史可分为以下3个时期:①古新世初裂陷 期,辽河地区热地幔上涌,地壳发生区域拱曲,拉张 变薄,产生一组以北东向为主的张性断裂系,大量岩 浆沿断裂侵入、喷发。②始新世一渐新世裂陷期,晚 始新断裂活动开始活动,渐新世早、中期,是新生代 块断活动强烈活动期,地壳周期性发生横向拉张和 垂向沉陷,盆地发育进入在幅度裂陷阶段,沉积以湖 相泥岩、砂岩为主,是该盆地主要烃源岩形成期,渐 新世中后期,断裂活动逐渐减弱,湖盆收缩,大范围 遭受剥蚀。③晚第三纪~第四纪后裂陷,早第三纪 末,拉张块断活动基本停止,裂谷消亡,晚第三纪开 始,构造活动微弱,盆地进入宁静的拗陷发展阶段。 4.2.2 盆地古地温重建结果与分析

本文选择了辽河盆地东部凹陷二界沟洼陷 D15 井为对象,恢复该盆地的古地温。结果见表 9A、9B。 表明古地温梯度自早第三纪以来呈降低趋势,从始 新世的4.5℃/100 m 降至现今的3.3℃/100 m。这 一研究成果与用磷灰石裂变径迹技术恢复的早第三 纪古地温梯度为4.23℃/100 m 的结果比较吻 合⁽²⁴⁾。辽河盆地这种演化特征同苏北盆地一样具有 大陆裂谷盆地高古地热流的特征^(25,26)。高的古地温 梯度有利于新生界烃源岩的成熟作用,这也是我国 东部大陆裂谷型盆地具有丰富的油气资源的原因之 一⁽¹³⁾。

表 9A D15 井地层分层与古地温梯度

Table 9A Stratigraphy and paleotemperature gradient in the D-15 well

层号	地层及时代(Ma)	底界深度/m	古地温梯度模式/℃/100m
1	沙河街组(43)	4 397	4. 5
2	东营组(36)	2 771	3. 5
3	馆陶组(24.6)	1 208	3.4
4			3.3(现今)

表 9B D15 井计算的 Easy R。 与实测 R。 对比

Table 8BCorrelation of the calculated R_0 (Easy R_0)

埋深/m	实测 R。/%	Easy $R_{o}/\%$
2 242	0.50	0.44
2 771	0.55	0.57
2 966	0.60	0.60
3 240	0.64	0.63
3 592	0. 93	0.73
4 100	1.01	0.92
4 397	1.05	1.10

5 讨论

本文利用镜质体反射率资料,通过 Easy R。方 法重建了我国东、西部古地温演化特征各异的不同 类型沉积盆地的古地温史。结果表明此方法不仅具 有广泛的适应性,而且古地温恢复的结果与实际地 质背景及热事件相符合,具有较高的准确性。

前人利用 TTI-R。方法对我国东部、西部含油 气盆地古地温作了大量研究,取得了许多成果⁽³⁾,例 如,对西部准噶尔盆地、东部黄骅坳陷和东濮坳陷 等。但是,利用 TTI-R。法对冀中饶阳凹陷和辽河西 部凹陷恢复的古地温值偏低,即早第三系的古地温 为 2.8~3.3 ℃/100 m,其原因是 TTI-R。方法中, 活化能作为温度的函数,而且在 103 ℃时,活化能为 20×4.1868×10³ Jmol⁻¹,因此,较低的活化能导致 了 TTI-R。方法过高地计算了有机质的成熟度⁽²⁾,因 而得到了较低的古地温梯度。

本文对我国东、西部几个盆地古地温重建研究, 无疑是对前人研究成果的一个补充。

6 结论

(1)在各种利用镜质体反射率恢复盆地古地温的方法中,Easy R。方法具有对各种不同热史、不同 类型盆地古地温恢复的广泛适应性,而且准确性相 对要高;过去常用的 TTI-R。法过高地计算了有机 质的成熟度,因而恢复的古地温梯度偏低。

(2)我国东部中、新生代断陷型盆地,普遍比西部中、新生代的前陆型盆地具有较高的古地温梯度。 中生代末至第三纪早期,东部盆地古地温梯度通常 大于 4.0 ℃/100 m,而西部约为 3.0~2.5 ℃/100 m。

(3)我国中、新生代沉积盆地古地温普遍具有从 高到低的演化趋势,而柴达木盆地则自早第三纪以 来具有从低(2.5℃/100 m)到高(3.0℃/100 m)的 演化趋势,这主要与该盆地长期活动的基底同生逆 断裂引起深部热水对流有关。

- 参考文献
- Sweeney J J, Burnham A K. Evaluation of simple model of vitriite reflectance based on chemical kinetics. AAPG Bull, 1990, 74(10), 1 559~1 570
- 2 Morrow D W, lssler D R. Calculation of vitrinite reflectance from thermal histories, A comparison of some methods. AAPG Bull, 1993.44(4):610~624
- 3 周中毅,潘长春. 沉积盆地古地温测定方法及其应用. 广州: 广东 科技出版社, 1992. 1~194
- 4 Waples D W. Time and temperature in petroleun formation rapplication of Lopatin's method of petroleum exploration. AAPG, Bull, 1980,64:916~926
- 5 Tissot B P, Welte D H. Petroleum formation and occurrence. New York: Springer-Yerlag, 1984:601~604
- 6 Tissot B P, Pelet R, Ungerer P. Thermal history of sedimentary basins, maturation indices and kinetics of oil and gas generation. AAPG Bull, 71(12), 1 445~1 466

- 7 Dow W G Kerogen studies and geological interpretions. Journal of Geochemical Exploration, 1977, 7, 79~99
- 8 Wood D A. Relationships between thermal maturity indices calculated using Arrhenius equation and Loptin method, implications for petroleum exploration. AAPG Bull, 1988, 72(2), 115~134
- 9 Hunt J M, Lewan M D, Hennet R J-C. Modeling oil generation with time-temperature index graphs based on the Arrhenius equation. AAPG Bull, 1991, 75(4): 795~807
- Middleton M F. Tectonic history from vitrinite reflectance; Geophysical Journal of the Royal Astronomical society, 1982, 68; 121 ~132
- 11 Hood A, Gutjahr C M, Peacock R L. Organic metamorphism and the generation of petroleum. AAPG Bull, 1975, 59,986~996
- 12 Price L C, Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. Journal of Petroleum Geology, 1983, 6(1): 5~38
- 13 李思田,吴冲龙.中国东北部晚中生代断陷盆地模式在松辽深部 煤成气预测中的可能应用.地球科学,1986,11(5);473~479
- 14 BurnhamA K, Sweeney J J. Achemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 1989,53:2649~2657
- 15 Quigley T M, Mackenzie A S. The temperature of oil and gas formation in the sub-surface. Nature, 1988, 33:549~552
- 16 赵孟为. 鄂尔多斯盆地油气形成与运移时间和运移方法的确定 与勘探方向. 石油实验地质,1996,18(4),341~347
- 17 Braun R L, Burnham A K. Analysis of chemical reaction kinetics using distribution of activation energies and simpler models. Energy and Fuels, 1987, 1, 153~161
- 18 真柄铁次著. 压实与流体运移. 陈荷立, 邸世祥, 汤锡元等译. 北京, 石油工业出版社, 1981. 8~19
- 19 真柄钦次著.石油圈闭的地质模型. 童晓光,贾承造译. 武汉,中国地质大学出版社,1991.83~97
- 20 Davus A. A discussion of methods of physical characterization used for coal. In, Cooper B R, ed. In Scientific Problems of Coal Utilization, Technical Information Center, U S Dept. of Energy, 1978. 13 ~45
- 21 王钧,黄尚瑶,黄歌山等著.中国地温分布的基本特征.北京:地 震出版社,1990.3~155
- 22 邹华耀,胡文义.生长逆断层与油气生成,运移和聚集.石油与天 然气地质,1993,14(3),200~206
- 23 Hooper E D D. Fluid migration along growth faults in compacting sediments. JPG, 1991, 14(2), 161~180
- 24 王良书,施央申.油气盆地地热研究.南京,南京大学出版社, 1989.20~42
- 25 廖兴明,姚继峰,于天欣等. 辽河盆地构造演化与油气.北京,石 油工业出版社,1996.19~28
- 26 Perrodon A. Petroleum system; models and application. JPG, 1992,15(3):319~325

1

Application of Vitrinite Reflectance in Reconstruction of Paleotemperature: Evolution of Paleotemperature in the Eastern and Western Mesozoic-Cenozoic Sedimentary Basins, China

Zou Huayao Wu Zhiyong

(Jianghan Petroleum Institute, Hubei Jinzhou 434102)

Abstract

Comparison and discussion were carried out with various methods, using vitrinite reflectance(VR) to reconstruct paleotemperature of sedimentary basins. It was perceived that the Easy R_0 algorithm is the most accurate method for prediction of VR and then for paleotemperature throughout the range of organic maturity normally encountered. The Easy R_0 model was wsed to restore paleotemperature gradients(PG) of four sedimentary basins in the eastern and western China, respectively. It was indicated that the eastern basins characteristic of continental rift basin had higher paleotemperature gradients in the Mesozoic-Cenozoic Era than those characteristic of foreland basin in the western China. The eastern basins had more than 4.0 °C/100m of PG from the Late Mesozoic to Early Cenozoic Era, but lower than 3.0~2.5 °C/100m in the western basins of China during the same period. Three of the four basins concerned, Liaohe Basin, subei Basin in the east and santanghu Basin in the west, had a decreasing evolution in PG in Late Mesozoic, while Qaidarn Basin underwent an increasing evolution in PG, from 2.5 °C/100m to nowadays 3.0 °C/100m. The success of PG reconstructions for four basins suggested that the Easy R_0 algorithm is suitable to PG reconstruction of various tectonically different basins.

Key Words vitrinite reflectance paleotemperature gradient Easy R_{o} sedimentary basin