[1] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. Berlin: Springer, 2005: 297.
[2] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
[3] 刘嘉麒,伍婧,储国强,等. 玛珥湖古气候环境研究进展[J]. 矿物岩石地球化学通报,2013,32(6):639-650.

Liu Jiaqi, Wu Jing, Chu Guoqiang, et al. Progress of palaeoclimatic and palaeoenvironmental studies on maar lakes[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 639-650.
[4] Zolitschka B, Francus P, Ojala A E K, et al. Varves in lake sediments:A review[J]. Quaternary Science Reviews, 2015, 117: 1-41.
[5] Bosak T, Knoll A H, Petroff A P. The meaning of stromatolites[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 21-44.
[6] 田兴,高远,王成善. 湖泊年纹层研究进展与展望[J]. 沉积学报,2023,41(6):1645-1661.

Tian Xing, Gao Yuan, Wang Chengshan. Progress and prospects of lacustrine varve research[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1645-1661.
[7] Rapin W, Ehlmann B L, Dromart G, et al. An interval of high salinity in ancient Gale crater lake on Mars[J]. Nature Geoscience, 2019, 12(11): 889-895.
[8] Schimmelmann A, Lange C B, Schieber J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246.
[9] Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
[10] Wilson R D, Schieber J. Muddy prodeltaic hyperpycnites in the Lower Genesee Group of central New York, USA: Implications for mud transport in epicontinental seas[J]. Journal of Sedimentary Research, 2014, 84(10): 866-874.
[11] Lazar O R, Bohacs K M, Schieber J, et al. Mudstone primer: Lithofacies variations, diagnostic criteria, and sedimentologic-stratigraphic implications at lamina to bedset scale[M]. Tulsa: SEPM, 2015.
[12] Macquaker J H S, Bentley S J, Bohacs K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
[13] Macquaker J H S, Keller M A, Davies S J. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments[J]. Journal of sedimentary Research, 2010, 80(11): 934-942.
[14] Schieber J. Mud re-distribution in epicontinental basins:Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133.
[15] Peng J W, Hu Z Q, Feng D J, et al. Sedimentology and sequence stratigraphy of lacustrine deep-water fine-grained sedimentary rocks: The Lower Jurassic Dongyuemiao Formation in the Sichuan Basin, western China[J]. Marine and Petroleum Geology, 2022, 146: 105933.
[16] Zou C N, Qiu Z, Zhang J Q, et al. Unconventional petroleum sedimentology: A key to understanding unconventional hydrocarbon accumulation[J]. Engineering, 2022, 18: 62-78.
[17] Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
[18] 蔡毅,朱如凯,吴松涛,等. 泥岩与页岩特征辨析[J]. 地质科技通报,2022,41(3):96-107.

Cai Yi, Zhu Rukai, Wu Songtao, et al. Discussion on characteristics of mudstone and shale[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 96-107.
[19] de Geer G.. Geochronology [J]. Antiquity, 1928, 2(7): 308-318.
[20] Anderson R Y, Koopmans L H. Harmonic analysis of varve time series[J]. Journal of Geophysical Research, 1963, 68(3): 877-893.
[21] Droppo I G, Leppard G G, Flannigan D T, et al. The freshwater floc: A functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties[C]//Proceedings of the 7th international symposium. Baveno: Springer, 1997: 43-53.
[22] Tylmann W, Zolitschka B, Enters D, et al. Laminated lake sediments in northeast Poland: Distribution, preconditions for formation and potential for paleoenvironmental investigation[J]. Journal of Paleolimnology, 2013, 50(4): 487-503.
[23] Talling P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182.
[24] Piper D J W. Turbidite origin of some laminated mudstones[J]. Geological Magazine, 1972, 109(2): 115-126.
[25] Stow D A V, Shanmugam G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42.
[26] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[27] Lowe D R. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
[28] Kong X X, Jiang Z X, Han C, et al. Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu Sag[J]. Journal of Earth Science, 2017, 28(6): 1047-1063.
[29] Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162.
[30] Zavala C, 潘树新. 异重流成因和异重岩沉积特征[J]. 岩性油气藏,2018,30(1):1-18.

Zavala C, Pan Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics[J]. Lithologic Reservoirs, 2018, 30(1): 1-18.
[31] Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47(1): 31-70.
[32] Baas J H, Best J L, Peakall J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987.
[33] Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits:Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
[34] Bai C Y, Yu B S, Dong T Y, et al. Wave-Enhanced sediment-gravity flows in Bohai Bay lacustrine basin, eastern China[J]. Acta Geologica Sinica‐English Edition, 2018, 92(6): 2416-2431.
[35] Schieber J, Bose P K, Eriksson P G, et al. Atlas of microbial mat features preserved within the siliciclastic rock record[M]. Amsterdam: Elsevier, 2007.
[36] Schieber J, Southard J B, Kissling P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032.
[37] Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds:Interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
[38] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184.

Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
[39] 葸克来,李克,操应长,等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发,2020,47(6):1244-1255.

Xi Kelai, Li Ke, Cao Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration & Development, 2020, 47(6): 1244-1255.
[40] Frogner P, Gíslason S R, Óskarsson N. Fertilizing potential of volcanic ash in ocean surface water[J]. Geology, 2001, 29(6): 487-490.
[41] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[42] Awramik S M, Buchheim H P. Giant stromatolites of the Eocene Green River Formation (Colorado, USA)[J]. Geology, 2015, 43(8): 691-694.
[43] Liu C L, Wang P X. The role of algal blooms in the formation of lacustrine petroleum source rocks: Evidence from Jiyang Depression, Bohai Gulf Rift Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 15-22.
[44] Ojala A E K, Francus P, Zolitschka B, et al. Characteristics of sedimentary varve chronologies:A review[J]. Quaternary Science Reviews, 2012, 43: 45-60.
[45] Bendle J M, Palmer A P, Thorndycraft V R, et al. High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modeling[J]. Quaternary Science Reviews, 2017, 177: 314-339.
[46] 张建国,姜在兴,刘鹏,等. 陆相超细粒页岩油储层沉积机制与地质评价[J]. 石油学报,2022,43(2):234-249.

Zhang Jianguo, Jiang Zaixing, Liu Peng, et al. Deposition mechanism and geological assessment of continental ultrafine-grained shale oil reservoirs[J]. Acta Petrolei Sinica, 2022, 43(2): 234-249.
[47] 陈钰,刘兴起,何利,等. 青藏高原北部可可西里库赛湖年纹层微区分析及形成机理[J]. 地质学报,2016,90(5):1006-1015.

Chen Yu, Liu Xingqi, He Li, et al. Micro-area analysis and mechanism of varves from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau[J]. Acta Geologica Sinica, 2016, 90(5): 1006-1015.
[48] 孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京:中国地质大学(北京),2020.

Kong Xiangxin. Sedimentary characteristics, origin and hydrocarbon accumulation of lacustrine carbonate-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2020.
[49] Pavan K. Microfacies analysis of mudstone in a freshwater to marine transect: Upper Cretaceous Dunvegan and Kaskapau Formations, western Canada Foreland Basin[D]. London: The University of western Ontario (Canada), 2019.
[50] Eichhorn L, Pirrung M, Zolitschka B, et al. Pleniglacial sedimentation process reconstruction on laminated lacustrine sediments from lava-dammed Paleolake Alf, West Eifel Volcanic Field (Germany)[J]. Quaternary Science Reviews, 2017, 172: 83-95.
[51] Keller M A, Macquaker J H S. Arctic Alaska's Lower Cretaceous (Hauterivian and Barremian) mudstone succession:Linking lithofacies, texture, and geochemistry to marine processes[R]. Reston: US Geological Survey, 2015.
[52] Nzekwe O P, Lapointe F, Francus P, et al. A new ~ 900-year varved record in Lake Walker, Québec North Shore, eastern Canada: Insight on Late Holocene climate mode of variability[J]. Journal of Paleolimnology, 2021, 67(1): 35-57.
[53] Ebinghaus A, Jolley D W, Andrews S D, et al. Lake sedimentological and ecological response to hyperthermals: Boltysh impact crater, Ukraine[J]. Sedimentology, 2017, 64(6): 1465-1487.
[54] 李维,朱筱敏,段宏亮,等. 苏北盆地高邮—金湖凹陷古近系阜宁组细粒沉积岩纹层特征与成因[J]. 古地理学报,2020,22(3):469-482.

Li Wei, Zhu Xiaomin, Duan Hongliang, et al. Characteristics and forming mechanism of laminae fine-grained sedimentary rock of the Paleogene Funing Formation in Gaoyou and Jinhu Sags, Subei Basin[J]. Journal of Palaeogeography, 2020, 22(3): 469-482.
[55] Kienel U, Schwab M J, Schettler G. Distinguishing climatic from direct anthropogenic influences during the past 400 years in varved sediments from Lake Holzmaar (Eifel, Germany)[J]. Journal of Paleolimnology, 2005, 33(3): 327-347.
[56] 陈世悦,张顺,刘惠民,等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报,2017,19(2):271-284.

Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of fine-grained sediments in lacustrine deep water[J]. Journal of Palaeogeography, 2017, 19(2): 271-284.
[57] Kelts K, Hsü K J. Freshwater carbonate sedimentation[M]. New York: Springer, 1978: 295-323.
[58] Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2010, 48(2): 465-478.
[59] Hage S, Cartigny M J B, Sumner E J, et al. Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes[J]. Geophysical Research Letters, 2019, 46(20): 11310-11320.
[60] Mackiewicz N E, Powell R D, Carlson P R, et al. Interlaminated ice-proximal glacimarine sediments in Muir Inlet, Alaska[J]. Marine Geology, 1984, 57(1/2/3/4): 113-147.
[61] Mutti E. Thin-bedded plumites: An overlooked deep-water deposit[J]. Journal of Mediterranean Earth Sciences, 2019, 11: 61-80.
[62] Bhattacharya J P, Maceachern J A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America[J]. Journal of Sedimentary Research, 2009, 79(4): 184-209.
[63] Heard T G. Ichnology and sedimentology of deep-marine clastic systems, Middle Eocene, Ainsa-Jaca Basin, Spanish Pyrenees[D]. London: University College London, 2008.
[64] Li Z Y, Schieber J. Detailed facies analysis of the Upper Cretaceous Tununk Shale member, Henry Mountains region, Utah: Implications for mudstone depositional models in epicontinental seas[J]. Sedimentary Geology, 2018, 364: 141-159.
[65] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[J]. AAPG Studies in Geology, 2012, 61: 1-30.
[66] 孙浩南,谈明轩,姚鹏. 环形水槽物理模拟的沉积学应用与发展趋势[J]. 沉积学报,2025,43(3):797-812.

Sun Haonan, Tan Mingxuan, Yao Peng. Progress and prospects in the sedimentological applications of a circular flume physical simulation[J]. Acta Sedimentologica Sinica, 2025, 43(3): 797-812.
[67] Zavala C, Arcuri M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics[J]. Sedimentary Geology, 2016, 337: 36-54.
[68] Praet N, van Daele M, Collart T, et al. Turbidite stratigraphy in proglacial lakes: Deciphering trigger mechanisms using a statistical approach[J]. Sedimentology, 2020, 67(5): 2332-2359.
[69] Boulesteix K, Poyatos-Moré M, Flint S S, et al. Transport and deposition of mud in deep-water environments: Processes and stratigraphic implications[J]. Sedimentology, 2019, 66(7): 2894-2925.
[70] Masterson K J. Hyperpycnal flow deposition and sequence stratigraphy of a Cretaceous near-shore mudstone unit: The Skull Creek Shale Formation, Colorado, USA[D]. Fort Collins: Colorado State University, 2015.
[71] Plint A G. Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647.
[72] Pierce C S, Haughton P D W, Shannon P M, et al. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, western Ireland[J]. Sedimentology, 2018, 65(3): 952-992.
[73] Yang R C, Fan A P, Han Z Z, et al. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2017, 85: 194-219.
[74] Peng J W. Sedimentology of the Upper Pennsylvanian organic-rich Cline Shale, Midland Basin: From gravity flows to pelagic suspension fallout[J]. Sedimentology, 2021, 68(2): 805-833.
[75] Shanmugam G. Deep-water bottom currents and their deposits[J]. Developments in Sedimentology, 2008, 60: 59-81.
[76] Nutz A, Schuster M, Ghienne J F, et al. Wind-driven bottom currents and related sedimentary bodies in Lake Saint-Jean (Québec, Canada)[J]. GSA Bulletin, 2015, 127(9/10): 1194-1208.
[77] Cohen A S. Paleolimnology: The history and evolution of lake systems[M]. Oxford: Oxford University Press, 2003: 500.
[78] Halfman J D, Dittman D E, Owens R W, et al. Storm-induced redistribution of deepwater sediments in Lake Ontario[J]. Journal of Great Lakes Research, 2006, 32(2): 348-360.
[79] 潘树新,陈彬滔,刘华清,等. 陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J]. 天然气地球科学,2014,25(10):1577-1585.

Pan Shuxin, Chen Bintao, Liu Hua-qing, et al. Deepwater bottom current rework sand (BCRS) in lacustrine basins: Sedimentary characteristics, identification criterion, formation mechanism and its significance for unconventional oil/gas exploration[J]. Natural Gas Geoscience, 2014, 25(10): 1577-1585.
[80] 吴松涛,朱如凯,罗忠,等. 中国中西部盆地典型陆相页岩纹层结构与储层品质评价[J]. 中国石油勘探,2022,27(5):62-72.

Wu Songtao, Zhu Rukai, Luo Zhong, et al. Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China[J]. China Petroleum Exploration, 2022, 27(5): 62-72.
[81] Wang S Q, Zhang J G, Li C S, et al. Research progress and prospects of deep water episodically deposited mudstones[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2025, 47(1): 770-781.
[82] 张建国. 济阳坳陷始新统沙三下亚段湖相细粒沉积岩成因机制研究[D]. 北京:中国地质大学(北京),2017.

Zhang Jianguo. The formation mechanisms of lacustrine fine-grained sedimentary rocks in the Eocene lower Es3 strata, the Jiyang Depression[D]. Beijing: China University of Geosciences (Beijing), 2017.
[83] 王鑫锐,孙雨,刘如昊,等. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报,2023,41(2):349-377.

Wang Xinrui, Sun Yu, Liu Ruhao, et al. Research progress into fine-grained sedimentary rock characteristics and formation in a continental lake basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 349-377.
[84] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada foreland basin[J]. Journal of Sedimentary Research, 2013, 82(11): 801-822.
[85] Al-Mufti O. Sedimentology and stratigraphy of the Upper Cretaceous Puskwaskau Formation in North-Central Alberta, western Canada foreland basin[D]. London: The University of western Ontario, 2018.
[86] Ayranci K, Harris N B, Dong T. Sedimentological and ichnological characterization of the Middle to Upper Devonian horn river group, British Columbia, Canada: Insights into mudstone depositional conditions and processes below storm wave base[J]. Journal of Sedimentary Research, 2018, 88(1): 1-23.
[87] 林培贤,林春明,姚悦,等. 渤海湾盆地北塘凹陷古近系沙河街组三段白云岩中方沸石的特征及成因[J]. 古地理学报,2017,19(2):241-256.

Lin Peixian, Lin Chunming, Yao Yue, et al. Characteristics and causes of analcime distributed in dolostone of the member 3 of Paleogene Shahejie Formation in Beitang Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2017, 19(2): 241-256.
[88] 姜在兴,王运增,王力,等. 陆相细粒沉积岩物质来源、搬运—沉积机制及多源油气甜点[J]. 石油与天然气地质,2022,43(5):1039-1048.

Jiang Zaixing, Wang Yunzeng, Wang Li, et al. Review on provenance, transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2022, 43(5): 1039-1048.
[89] 柳益群,周鼎武,南云,等. 新疆北部地区二叠系幔源碳酸岩质喷积岩研究[J]. 古地理学报,2018,20(1):49-63.

Liu Yiqun, Zhou Dingwu, Yun Nan, et al. Permian mantle-derived carbonatite originated exhalative sedimentary rocks in north Xinjiang[J]. Journal of Palaeogeography, 2018, 20(1): 49-63.
[90] 王建功,杨少勇,李翔,等. 柴达木盆地西部地区咸化湖泊微生物岩特征与差异分布[J]. 中国矿业大学学报,2020,49(6):1111-1127.

Wang Jiangong, Yang Shaoyong, Li Xiang, et al. The characteristics and differential distribution of microbial carbonates of saline lacustrine in the western Qaidam Basin[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1111-1127.
[91] Hornby A J, Lavallée Y, Kendrick J E, et al. Phase partitioning during fragmentation revealed by QEMSCAN particle mineralo-gical analysis of volcanic ash[J]. Scientific Reports, 2019, 9(1): 126.
[92] Zhu S F, Jia Y, Cui H, et al. Alteration and burial dolomitization of fine-grained, intermediate volcaniclastic rocks under saline-alkaline conditions: Bayindulan Sag in the Er'lian Basin, China[J]. Marine and Petroleum Geology, 2019, 110: 621-637.
[93] Sarg J F, Suriamin, Tänavsuu-Milkeviciene K, et al. Lithofacies, stable isotopic composition, and stratigraphic evolution of microbial and associated carbonates, Green River Formation (Eocene), Piceance Basin, Colorado[J]. AAPG Bulletin, 2013, 97(11): 1937-1966.
[94] James N P, Dalrymple R W. Facies models 4[M]. St. John's: Geological Association of Canada, 2010: 586.
[95] Boehrer B, Schultze M. Stratification of lakes[J]. Reviews of Geophysics, 2008, 46(2): RG2005.
[96] 王冠民,钟建华. 湖泊纹层的沉积机理研究评述与展望[J]. 岩石矿物学杂志,2004,23(1):43-48.

Wang Guanmin, Zhong Jianhua. A review and the prospects of the researches on sedimentary mechanism of lacustrine laminae[J]. Acta Petrologica et Mineralogica, 2004, 23(1): 43-48.
[97] Wetzel R G. Limnology: Lake and river ecosystems[M]. 3rd ed. San Diego: Academic Press, 2001.
[98] Dor Y B, Neugebauer I, Enzel Y, et al. Varves of the Dead Sea sedimentary record[J]. Quaternary Science Reviews, 2019, 215: 173-184.
[99] Zou C N, Zhu R K, Chen Z Q, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.
[100] Anderson R Y, Dean D E, Bradbury J P, et al. Meromictic lakes and varved lake sediments in North America[R]. US Government Printing Office, 1985.
[101] 刘惠民,杨怀宇,张鹏飞,等. 古湖泊水介质条件对混积岩相组合沉积的控制作用:以渤海湾盆地东营凹陷古近系沙河街组三段为例[J]. 石油与天然气地质,2022,43(2):297-306.

Liu Huimin, Yang Huaiyu, Zhang Pengfei, et al. Control effect of paleolacustrine water conditions on mixed lithofacies assemblages: A case study of the Palaeogene Es 3, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(2): 297-306.
[102] Tang Y, Cao J, He W J, et al. Discovery of shale oil in alkaline lacustrine basins: The Late Paleozoic Fengcheng Formation, Mahu Sag, Junggar Basin, China[J]. Petroleum Science, 2021, 18(5): 1281-1293.
[103] Liu J P, Xian B Z, Ji Y L, et al. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: The Eocene Dongying Depression, Bohai Bay Basin, East China[J]. Marine and Petroleum Geology, 2020, 114: 104197.
[104] Zavala C, Arcuri M, Meglio M D, et al. Deltas: A new classification expanding Bates's concepts[J]. Journal of Palaeogeography, 2021, 10: 23.
[105] 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发,2020,47(6):1079-1089.

Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089.
[106] Jazi S D, Wells M G. Dynamics of settling-driven convection beneath a sediment-laden buoyant overflow: Implications for the length-scale of deposition in lakes and the coastal ocean[J]. Sedimentology, 2020, 67(1): 699-720.
[107] 施振生,邱振,董大忠,等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发,2018,45(2):339-348.

Shi Zhensheng, Qiu Zhen, Dong Dazhong, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(2): 339-348.
[108] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
[109] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.

Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.
[110] 莱尔曼. 湖泊的化学地质学和物理学[M]. 王苏民,译. 北京:地质出版社,1989. [

Lerman A. Chemical geology and physics of lakes[M]. Wang Sumin, trans. Beijing: Geological Publishing House, 1989.]
[111] Halfar J, Ingle Jr J C, Godinez-Orta L. Modern non-tropical mixed carbonate-siliciclastic sediments and environments of the southwestern Gulf of California, Mexico[J]. Sedimentary Geology, 2004, 165(1/2): 93-115.
[112] 余恩晓. 松辽盆地晚白垩世嫩江组一段细粒沉积物沉积环境及年际古气候特征[D]. 北京:中国地质大学(北京),2019.

Yu Enxiao. Depositional environments and inter-annual paleoclimatic characteristics of the fine-grained sedimentary rocks of the First member of the Nenjiang Formation in the Late Cretaceous Songliao Basin[D]. Beijing: China University of Geosciences (Beijing), 2019.
[113] Carroll A R, Bohacs K M. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls[J]. Geology, 1999, 27(2): 99-102.
[114] Smith M E, Carroll A R. Stratigraphy and paleolimnology of the Green River Formation, western USA[M]. Dordrecht: Springer, 2015: 1-355.
[115] 王苗,陆建林,左宗鑫,等. 纹层状细粒沉积岩特征及主控因素分析:以渤海湾盆地东营凹陷沙四上—沙三下亚段为例[J]. 石油实验地质,2018,40(4):470-478.

Wang Miao, Lu Jianlin, Zuo Zongxin, et al. Characteristics and dominating factors of lamellar fine-grained sedimentary rocks: A case study of the upper Es4 member-lower Es3 member, Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018, 40(4): 470-478.
[116] Chen P, Xian B Z, Li M J, et al. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin, China: Sedimentary processes and depositional architecture[J]. Sedimentology, 2021, 68(7): 3279-3306.
[117] Yang R C, Jin Z J, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
[118] Boulesteix K, Poyatos-Moré M, Hodgson D M, et al. Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout[J]. Journal of Sedimentary Research, 2020, 90(12): 1678-1705.
[119] Li W W, Cao J, Zhi D M, et al. Controls on shale oil accumulation in alkaline lacustrine settings: Late Paleozoic Fengcheng Formation, northwestern Junggar Basin[J]. Marine and Petroleum Geology, 2021, 129: 105107.
[120] Sun N L, Chen T Y, Zhong J H, et al. Petrographic and geochemical characteristics of deep-lacustrine organic-rich mudstone and shale of the Upper Triassic Chang 7 member in the southern Ordos Basin, northern China: Implications for shale oil exploration[J]. Journal of Asian Earth Sciences, 2022, 227: 105118.
[121] Demicco R V, Lowenstein T K. When “evaporites” are not formed by evaporation: The role of temperature and pCO2 on saline deposits of the Eocene Green River Formation, Colorado, USA[J]. GSA Bulletin, 2020, 132(7/8): 1365-1380.
[122] Schieber J, Shao X H. Detecting detrital carbonate in shale successions:Relevance for evaluation of depositional setting and sequence stratigraphic interpretation[J]. Marine and Petroleum Geology, 2021, 130: 105130.
[123] Buchheim P, Biaggi R E, Cushman R A. Stratigraphy and interbasinal correlations between fossil and the Green River Basin, Wyoming[M]//Smith M E, Carroll A R. Stratigraphy and paleolimnology of the Green River Formation, western USA. Dordrecht: Springer, 2015: 127-151.
[124] Stockhecke M, Sturm M, Brunner I, et al. Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years[J]. Sedimentology, 2014, 61(6): 1830-1861.
[125] Wang W W, Jiang Z X, Xie X Y, et al. Sedimentary character-istics and interactions among volcanic, terrigenous and marine processes in the Late Permian Kuishan member, eastern block of the North China Craton[J]. Sedimentary Geology, 2020, 407: 105741.
[126] Li Z Y, Schieber J, Pedersen P K. On the origin and significance of composite particles in mudstones: Examples from the Cenomanian Dunvegan Formation[J]. Sedimentology, 2021, 68(2): 737-754.
[127] Liang C, Cao Y C, Liu K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128.
[128] 金之钧,朱如凯,梁新平,等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发,2021,48(6):1276-1287.

Jin Zhijun, Zhu Rukai, Liang Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287.
[129] 邹才能,马锋,潘松圻,等. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J]. 地学前缘,2023,30(1):128-142.

Zou Caineng, Ma Feng, Pan Songqi, et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers, 2023, 30(1): 128-142.
[130] 吴科睿,孙雨,闫百泉,等. 纹层状湖盆细粒沉积岩储集物性及油气富集特征研究进展[J]. 沉积学报,2025,43(1):20-38.

Wu Kerui, Sun Yu, Yan Baiquan, et al. Progress on the features of physical property and hydrocarbon accumulation of laminated lacustrine fine-grained sedimentary rocks[J]. Acta Sedimentologica Sinica, 2025, 43(1): 20-38.
[131] Li M Y, Wu S T, Hu S Y, et al. Lamina variation and its relationship with sedimentary facies in alkaline lacustrine, Permian Fengcheng Formation, Junggar Basin, Northwest China[J]. ACS Omega, 2022, 8(1): 599-613.
[132] 朱如凯,吴松涛,崔景伟,等. 油气储层中孔隙尺寸分级评价的讨论[J]. 地质科技通报,2016,35(3):133-144.

Zhu Rukai, Wu Songtao, Cui Jingwei, et al. Classification and evaluation of pore size in oil & gas reservoir rocks[J]. Bulletin of Geological Science and Technology, 2016, 35(3): 133-144.
[133] Gao Z Y, Duan L F, Jiang Z X, et al. Using laser scanning confocal microscopy combined with saturated oil experiment to investigate the pseudo in-situ occurrence mechanism of light and heavy components of shale oil in sub-micron scale[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111234.
[134] Schieber J, Li Z Y, Yawar Z, et al. Kaolinite deposition from moving suspensions: The roles of flocculation, salinity, suspended sediment concentration and flow velocity/bed shear[J]. Sedimentology, 2023, 70(1): 121-144.
[135] 朱如凯,李梦莹,杨静儒,等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质,2022,43(2):251-264.

Zhu Rukai, Li Mengying, Yang Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264.
[136] 张顺,刘惠民,陈世悦,等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨:以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报,2017,91(5):1108-1119.

Zhang Shun, Liu Huimin, Chen Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J] Acta Geologica Sinica, 2017, 91(5): 1108-1119.
[137] 赵建华,金之钧. 泥岩成岩作用研究进展与展望[J]. 沉积学报,2021,39(1):58-72.

Zhao Jianhua, Jin Zhijun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1) 58-72.
[138] Bohacs K M, Lazar O R, Demko T M. Parasequence types in shelfal mudstone strata-quantitative observations of lithofacies and stacking patterns, and conceptual link to modern depositional regimes[J]. Geology, 2014, 42(2): 131-134.
[139] Wilson R D, Schieber J, Bohacs K M. Sequence stratigraphic reconstruction of the late Middle Devonian Geneseo Formation of NY, USA: Developing a genetic model for “Upper Devonian” unconventional targets in the northern Appalachian Basin[J]. Marine and Petroleum Geology, 2022, 138: 105547.
[140] Kemp D B, Fraser W T, Izumi K. Stratigraphic completeness and resolution in an ancient mudrock succession[J]. Sedimentology, 2018, 65(6): 1875-1890.
[141] Shi J Y, Jin Z J, Liu Q Y, et al. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China[J]. Global and Planetary Change, 2021, 205: 103614.
[142] Lin M R, Xi K L, Cao Y C, et al. Periodic paleo-environment oscillation on multi-timescales in the Triassic and their significant implications for algal blooms: A case study on the lacustrine shales in Ordos Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 612: 111376.
[143] Lin Q, Liu E F, Zhang E L, et al. Spatial variation of organic carbon sequestration in large lakes and implications for carbon stock quantification[J]. CATENA, 2022, 208: 105768.
[144] Huang W T, Wu H C, Fang Q, et al. Orbitally forced organic matter accumulation recorded in an Early Permian mid-latitude palaeolake[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 606: 111259.
[145] Jonk R, Bohacs K M, Davis J S. Evaluating top seals within a sequence-stratigraphic framework: Impact on geological carbon sequestration[J]. Marine and Petroleum Geology, 2022, 146: 105920.
[146] 李威,张元元,倪敏婕,等. 准噶尔盆地玛湖凹陷下二叠统古老碱湖成因探究:来自全球碱湖沉积的启示[J]. 地质学报,2020,94(6):1839-1852.

Li Wei, Zhang Yuanyuan, Ni Minjie, et al. Genesis of alkaline lacustrine deposits in the Lower Permian Fengcheng Formation of the Mahu Sag, northwestern Junggar Basin: Insights from a comparison with the worldwide alkaline lacustrine deposits[J]. Acta Geologica Sinica, 2020, 94(6): 1839-1852.
[147] Joseph R G, Gibson C, Wolowski K, et al. Evolution of life in the oceans of Mars? Episodes of global warming, flooding, rivers, lakes, and chaotic orbital obliquity[J]. Journal of Astrobiology, 2022, 13: 14-126.
[148] Brasier A T, Dennis P F, Still J, et al. Detecting ancient life: Investigating the nature and origin of possible stromatolites and associated calcite from a one billion year old lake[J]. Precambrian Research, 2019, 328: 309-320.
[149] Schieber J, Bohacs K M, Coleman M, et al. Mars is a mirror:Understanding the Pahrump Hills mudstones from a perspective of Earth analogues[J]. Sedimentology, 2022, 69(6): 2371-2435.