| [1] | Machel H G. Concepts and models of dolomitization: A critical reappraisal[J]. Geological Society, London, Special Publications, 2004, 235(1): 7-63. |
| [2] | Cai W K, Liu J H, Zhou C H, et al. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas[J]. Chemical Geology, 2021, 573: 120191. |
| [3] | Fairbridge R W. The dolomite question[M]//le Blanc R J, Breeding J G. Regional aspects of carbonate deposition. New York: SEPM Society for Sedimentary Geology, 1957: 124-178. |
| [4] | Baker P A, Kastner M. Constraints on the formation of sedimentary dolomite[J]. Science, 1981, 213(4504): 214-216. |
| [5] | Land L S. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3): 361-368. |
| [6] | Lippmann F. Crystal chemistry of sedimentary carbonate minerals[M]//Lippmann F. Sedimentary carbonate minerals. Berlin: Springer, 1973: 5-96. |
| [7] | Lippmann F. Stable and metastable solubility diagrams for the system CaCO3-MgCO3-H2O at ordinary temperature[J]. Bulletin de Minéralogie, 1982, 105(3): 273-279. |
| [8] | Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81. |
| [9] | 李波,颜佳新,刘喜停,等. 白云岩有机成因模式:机制、进展与意义[J]. 古地理学报,2010,12(6):699-710. Li Bo, Yan Jiaxin, Liu Xiting, et al. The organogenic dolomite model: Mechanism, progress and significance[J]. Journal of Palaeogeography, 2010, 12(6): 699-710. |
| [10] | Machel H G, Mountjoy E W. Chemistry and environments of dolomitization: A reappraisal[J]. Earth-Science Reviews, 1986, 23(3): 175-222. |
| [11] | Kim J, Kimura Y, Puchala B, et al. Dissolution enables dolomite crystal growth near ambient conditions[J]. Science, 2023, 382(6673): 915-920. |
| [12] | 甯濛,黄康俊,沈冰. 镁同位素在“白云岩问题”研究中的应用及进展[J]. 岩石学报,2018,34(12):3690-3708. Ning Meng, Huang Kangjun, Shen Bing. Applications and advances of the magnesium isotope on the'dolomite problem'[J]. Acta Petrologica Sinica, 2018, 34(12): 3690-3708. |
| [13] | Gaines A M. Protodolomite redefined[J]. Journal of Sedimentary Research, 1977, 47(2): 543-546. |
| [14] | Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222. |
| [15] | Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390. |
| [16] | Sánchez-Román M, McKenzie J A, Wagener A d L R, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139. |
| [17] | Qiu X, Yao Y C, Wang H M, et al. Halophilic archaea mediate the formation of proto-dolomite in solutions with various sulfate concentrations and salinities[J]. Frontiers in Microbiology, 2019, 10: 480. |
| [18] | 由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘,2011,18(4):52-64. You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64. |
| [19] | Petrash D A, Bialik O M, Bontognali T R R, et al. Microbially catalyzed dolomite formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582. |
| [20] | 许杨阳,刘邓,于娜,等. 微生物(有机)白云石成因模式研究进展与思考[J]. 地球科学,2018,43(增刊1):63-70. Xu Yangyang, Liu Deng, Yu Na, et al. Advance and review on microbial/organogenic dolomite model[J]. Earth Science, 2018, 43(Suppl.1): 63-70. |
| [21] | Krause S, Liebetrau V, Gorb S, et al. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma[J]. Geology, 2012, 40(7): 587-590. |
| [22] | Kenward P A, Fowle D A, Goldstein R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J]. AAPG Bulletin, 2013, 97(11): 2113-2125. |
| [23] | Zhang F F, Xu H F, Konishi H, et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite[J]. Geochimica et Cosmochimica Acta, 2012, 97: 148-165. |
| [24] | Zhang F F, Xu H F, Konishi H, et al. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite[J]. American Mineralogist, 2012, 97(4): 556-567. |
| [25] | Liu D, Xu Y Y, Papineau D, et al. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals[J]. Geochimica et Cosmochimica Acta, 2019, 247: 83-95. |
| [26] | Fang Y H, Xu H F. Dissolved silica-catalyzed disordered dolomite precipitation[J]. American Mineralogist, 2022, 107(3): 443-452. |
| [27] | Fang Y H, Zhang F F, Farfan G A, et al. Low-temperature synthesis of disordered dolomite and high-magnesium calcite in ethanol-water solutions: The solvation effect and implications[J]. ACS Omega, 2022, 7(1): 281-292. |
| [28] | Meng R R, Han Z Z, Gao X, et al. Dissolved ammonia catalyzes proto-dolomite precipitation at Earth surface temperature[J]. Earth and Planetary Science Letters, 2024, 646: 119012. |
| [29] | Han Z Z, Li J, Zhao Y Y, et al. Dissolved Mn2+ promotes microbially-catalyzed protodolomite precipitation in brackish oxidized water[J]. Chemical Geology, 2024, 650: 121986. |
| [30] | Chen T, Qiu X, Liu D, et al. Dissolved silicon as a beneficial factor for biomineralization of disordered dolomite by a halophilic cyanobacterium[J]. Chemical Geology, 2024, 670: 122435. |
| [31] | Vandeginste V, Snell O, Hall M R, et al. Acceleration of dolomitization by zinc in saline waters[J]. Nature Communications, 2019, 10(1): 1851. |
| [32] | Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183. |
| [33] | Kastner M. Sedimentology: Control of dolomite formation[J]. Nature, 1984, 311(5985): 410-411. |
| [34] | Liebermann O. Synthesis of dolomite[J]. Nature, 1967, 213(5073): 241-245. |
| [35] | Morrow D W, Ricketts B D. Chemical controls on the precipitation of mineral analogues of dolomite: The sulfate enigma[J]. Geology, 1986, 14(5): 408-410. |
| [36] | Morrow D W, Ricketts B D. Experimental investigation of sulfate inhibition of dolomite and its mineral analogues[M]//Shukla V, Baker P A. Sedimentology and geochemistry of dolostones. SEPM Society for Sedimentary Geology, 1988: 27-38. |
| [37] | Slaughter M, Hill R J. The influence of organic matter in organogenic dolomitization[J]. Journal of Sedimentary Research, 1991, 61(2): 296-303. |
| [38] | Compton J S. Degree of supersaturation and precipitation of organogenic dolomite[J]. Geology, 1988, 16(4): 318-321. |
| [39] | Brady P V, Krumhansl J L, Papenguth H W. Surface complexation clues to dolomite growth[J]. Geochimica et Cosmochimica Acta, 1996, 60(4): 727-731. |
| [40] | Burns S J, Mckenzie J A, Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2000, 47(Suppl.1): 49-61. |
| [41] | Holland H D, Zimmermann H. The dolomite problem revisited[J]. International Geology Review, 2000, 42(6): 481-490. |
| [42] | Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere[J]. Nature, 2004, 431(7010): 834-838. |
| [43] | Li M T, Song H J, Algeo T J, et al. A dolomitization event at the oceanic chemocline during the Permian-Triassic transition[J]. Geology, 2018, 46(12): 1043-1046. |
| [44] | Li M T, Wignall P B, Dai X, et al. Phanerozoic variation in dolomite abundance linked to oceanic anoxia[J]. Geology, 2021, 49(6): 698-702. |
| [45] | Gregg J M, Kaczmarek S E, Bish D L, et al. A dolomitization event at the oceanic chemocline during the Permian-Triassic transition: Comment[J]. Geology, 2019, 47(7): e467. |
| [46] | Rivers J M, Ryan B H, Manche C J, et al. Phanerozoic variation in dolomite abundance linked to oceanic anoxia: Comment[J]. Geology, 2021, 49(9): e534. |
| [47] | Frear G L, Johnston J. The solubility of calcium carbonate (calcite) in certain aqueous solutions at 25°[J]. Journal of the American Chemical Society, 1929, 51(7): 2082-2093. |
| [48] | Busenberg E, Plummer L N. Kinetic and thermodynamic factors controlling the distribution of SO4 2- and Na+ in calcites and selected aragonites[J]. Geochimica et Cosmochimica Acta, 1985, 49(3): 713-725. |
| [49] | Wang X L, Chou I M, Hu W X, et al. In situ observations of liquid–liquid phase separation in aqueous MgSO4 solutions: Geological and geochemical implications[J]. Geochimica et Cosmochimica Acta, 2013, 103: 1-10. |
| [50] | Wang X L, Chou I M, Hu W X, et al. Kinetic inhibition of dolomite precipitation: Insights from Raman spectroscopy of Mg2+-SO4 2- ion pairing in MgSO4/MgCl2/NaCl solutions at temperatures of 25 to 200℃[J]. Chemical Geology, 2016, 435: 10-21. |
| [51] | Baker P A, Burns S J. Occurrence and formation of dolomite in organic-rich continental margin sediments[J]. AAPG Bulletin, 1985, 69(11): 1917-1930. |
| [52] | McCaffrey M A, Lazar B, Holland H D. The evaporation path of seawater and the coprecipitation of Br (super-) and K (super+) with halite[J]. Journal of Sedimentary Research, 1987, 57(5): 928-937. |
| [53] | Akilan C, Rohman N, Hefter G, et al. Temperature effects on ion association and hydration in MgSO4 by dielectric spectroscopy[J]. ChemPhysChem, 2006, 7(11): 2319-2330. |
| [54] | Liu D, Fan Q G, Papineau D, et al. Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances[J]. Chemical Geology, 2020, 533: 119415. |
| [55] | Eigen M, Tamm U K. Schallabsorption in elektrolytlösungen als folge chemischer relaxation II. Meßergebnisse und relaxationsmechanismen für 2—2-wertige elektrolyte[J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1962, 66(2): 107-121. |
| [56] | Rivadeneyra M A, Delgado R, Delgado G, et al. Precipitation of carbonates by Bacillus sp. isolated from saline soils[J]. Geomicrobiology Journal, 1993, 11(3/4): 175-184. |
| [57] | Rivadeneyra M A, Delgado G, Soriano M, et al. Precipitation of carbonates by Nesterenkonia halobia in liquid media[J]. Chemosphere, 2000, 41(4): 617-624. |
| [58] | Rivadeneyra M A, Párraga J, Delgado R, et al. Biomineralization of carbonates by halobacillus trueperi in solid and liquid media with different salinities[J]. FEMS Microbiology Ecology, 2004, 48(1): 39-46. |
| [59] | Jones B F. The hydrology and mineralogy of deep springs lake, Inyo county, California[R]. Reston: USGS, 1965: 56. |
| [60] | Jagniecki E A, Berg M D V, Boyd E S, et al. Sulfate-rich spring seeps and seasonal formation of terraced, crystalline mirabilite mounds along the shores of Great Salt Lake, Utah: Hydrologic and chemical expression during declining lake elevation[J]. Chemical Geology, 2023, 636: 121650. |
| [61] | Engstrom D R, Nelson S R. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(4): 295-312. |
| [62] | Last W M, Deleqiat J, Greengrass K, et al. Re-examination of the recent history of meromictic Waldsea Lake, Saskatchewan, Canada[J]. Sedimentary Geology, 2002, 148(1/2): 147-160. |
| [63] | Lyons W B, Hines M E, Last W M, et al. Sulfate reduction rates in microbial mat sediments of differing chemistries: Implications for organic carbon preservation in saline lakes[M]//Renaut R W, Last W M. Sedimentology and geochemistry of modern and ancient saline lakes models. SEPM Society for Sedimentary Geology, 1994: 13-20. |
| [64] | Strang D, Aherne J, Shaw P D. The hydrochemistry of high-elevation lakes in the Georgia Basin, British Columbia[J]. Journal of Limnology, 2010, 69(1s): 56-66. |
| [65] | Wright D T, Wacey D. Precipitation of dolomite using sulphate‐reducing bacteria from the Coorong region, South Australia: Significance and implications[J]. Sedimentology, 2005, 52(5): 987-1008. |
| [66] | Jacobson G, Jankowski J. Groundwater-discharge processes at a central Australian playa[J]. Journal of Hydrology, 1989, 105(3/4): 275-295. |
| [67] | Pirlo M C, Giblin A M. Application of groundwater-mineral equilibrium calculationsto geochemical exploration for sediment-hosted uranium: Observations from the Frome Embayment, South Australia[J]. Geochemistry: Exploration, Environment, Analysis, 2004, 4(2): 113-127. |
| [68] | Tweed S, Leblanc M, Cartwright I, et al. Arid zone groundwater recharge and salinisation processes;an example from the Lake Eyre Basin, Australia[J]. Journal of Hydrology, 2011, 408(3/4): 257-275. |
| [69] | Papineau M, Haemmerli J. Changes in water quality in the Laflamme Lake watershed area, Canada[J]. Water, Air, and Soil Pollution, 1992, 61(1): 95-105. |
| [70] | Simon B, Kucserka T, Anda A. Investigation of Salix alba and Populus tremula leaf litter decomposition in the area of Lake Balaton and Kis-Balaton Wetland[J]. Acta Agraria Debreceniensis, 2018, 74: 159-162. |
| [71] | Lopez P L, Mandado J M. Experimental evaporation of superficial brines from continental playa-lake systems located in Central Ebro Basin (northeast Spain)[M]//Schreiber B C, Lugli S, Bąbel M. Evaporites through space and time. London: Geological Society of London, 2007: 143-154. |
| [72] | Hidalgo M C, Cruz-Sanjulián J. Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza Basin, southern Spain)[J]. Applied Geochemistry, 2001, 16(7/8): 745-758. |
| [73] | Camur M Z, Mutlu H. Major-ion geochemistry and mineralogy of the Salt Lake (Tuz Gölü) Basin, Turkey[J]. Chemical Geology, 1996, 127(4): 313-329. |
| [74] | Kuşcu M, Şener Ş, Tuncay E B. Recharge sources and hydro geochemical evaluations of Na2SO4 deposits in the Acıgöl Lake (Denizli, Turkey)[J]. Journal of African Earth Sciences, 2017, 134: 265-275. |
| [75] | Reimer A, Landmann G, Kempe S. Lake Van, eastern Anatolia, hydrochemistry and history[J]. Aquatic Geochemistry, 2009, 15(1): 195-222. |
| [76] | Alipour S. Hydrogeochemistry of seasonal variation of Urmia salt lake, Iran[J]. Saline Systems, 2006, 2(1): 9. |
| [77] | Dzhetimov M, Andasbayev E, Esengabylov I, et al. Physical and chemical research of processes of salt formation in the water of Balkhash lake[C]//CBU international conference on integration and innovation in science and education. Prague: CBU, 2013: 400-411. |
| [78] | Borzenko S V, Zamana L V, Usmanova L I. Basic formation mechanisms of Lake Doroninskoye soda water, East Siberia, Russia[J]. Acta Geochimica, 2018, 37(4): 546-558. |
| [79] | Liu D, Yu N, Papineau D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49. |
| [80] | Fan Q S, Lowenstein T K, Wei H C, et al. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, western China[J]. Chemical Geology, 2018, 497: 128-145. |
| [81] | Cioni R, Fanelli G, Guidi M, et al. Lake Bogoria hot springs (Kenya): Geochemical features and geothermal implications[J]. Journal of Volcanology and Geothermal Research, 1992, 50(3): 231-246. |
| [82] | Yan J P, Hinderer M, Einsele G. Geochemical evolution of closed-basin lakes: General model and application to Lakes Qinghai and Turkana[J]. Sedimentary Geology, 2002, 148(1/2): 105-122. |
| [83] | Hategekimana F, Ndikuryayo J D, Habimana E, et al. Lake Kivu water chemistry variation with depth over time, northwestern Rwanda[J]. Rwanda Journal of Engineering, Science, Technology and Environment, 2020, 3(1): 1-20. |
| [84] | Cheng J R, Meng X Q, Zhang E L, et al. An Early Holocene primary dolomite layer of abiotic origin in Lake Sayram, Central Asia[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096309. |
| [85] | Warthmann R, van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094. |
| [86] | van Lith Y, Warthmann R, Vasconcelos C, et al. Sulphate‐reducing bacteria induce low‐temperature Ca‐dolomite and high Mg‐calcite formation[J]. Geobiology, 2003, 1(1): 71-79. |
| [87] | Corzo A, Luzon A, Mayayo M J, et al. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain)[J]. Geomicrobiology Journal, 2005, 22(6): 283-298. |
| [88] | Brennan S T, Lowenstein T K, Cendón D I. The major-ion composition of Cenozoic seawater: The past 36 million years from fluid inclusions in marine halite[J]. American Journal of Science, 2013, 313(8): 713-775. |
| [89] | Bathurst R G C. Carbonate sediments and their diagenesis[M]. Amsterdam: Elsevier, 1972: 1-658. |
| [90] | Lerman A. Lakes: Chemistry, geology, physics[M]. New York: Springer, 1978: 237-289. |
| [91] | Nesbitt H W. The study of some mineral-aqueous solution interactions[D]. Baltimore: Johns PapineauHopkins University, 1974: 173. |
| [92] | Siegel F R. Factors influencing the precipitation of dolomitic carbonates[J]. Bulletin (Kansas Geological Survey), 1961(152): 129-158. |
| [93] | Deng S C, Dong H L, Lv G, et al. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China[J]. Chemical Geology, 2010, 278(34): 151-159. |
| [94] | Wells A J. Recent dolomite in the Persian gulf[J]. Nature, 1962, 194(4825): 274-275. |
| [95] | Chilingar G V, Bissell H J. Formation of dolomite in sulfate-chloride solutions[J]. Journal of Sedimentary Research, 1963, 33(3): 801-803. |
| [96] | Hsü K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25. |
| [97] | Illing L V, Wells A J, Taylor J C M. Penecontemporary dolomite in the Persian gulf[M]//Pray L C, Murray R C. Dolomitization and limestone diagenesis. Tulsa: SEPM Society for Sedimentary Geology, 1965: 89-111. |
| [98] | Butler G P. Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf[J]. Journal of Sedimentary Research, 1969, 39(1): 70-89. |
| [99] | Brauchli M, McKenzie J A, Strohmenger C J, et al. The importance of microbial mats for dolomite formation in the Dohat Faishakh sabkha, Qatar[J]. Carbonates and Evaporites, 2016, 31(3): 339-345. |
| [100] | DiLoreto Z A, Bontognali T R R, Al Disi Z A, et al. Microbial community composition and dolomite formation in the hypersaline microbial mats of the Khor Al-Adaid sabkhas, Qatar[J]. Extremophiles, 2019, 23(2): 201-218. |
| [101] | 袁鑫鹏,刘建波. 回流渗透模式白云岩研究历史与进展[J]. 古地理学报,2012,14(2):219-228. Yuan Xinpeng, Liu Jianbo. Research history and progress on reflux seepage dolostone[J]. Journal of Palaeogeography, 2012, 14(2): 219-228. |
| [102] | 朱光有,李茜. 白云岩成因类型与研究方法进展[J]. 石油学报,2023,44(7):1167-1190. Zhu Guangyou, Li Xi. Progress in genetic types and research methods of dolomite[J]. Acta Petrolei Sinica, 2023, 44(7): 1167-1190. |
| [103] | 王金艺,金振奎. 微生物白云岩形成机理、识别标志及存在的问题[J]. 沉积学报,2022,40(2):350-359. Wang Jinyi, Jin Zhenkui. Formation mechanism, identification markers, and questions regarding microbial dolomite[J]. Acta Sedimentologica Sinica, 2022, 40(2): 350-359. |
| [104] | Perri E, Tucker M. Bacterial fossils and microbial dolomite in Triassic stromatolites[J]. Geology, 2007, 35(3): 207-210. |
| [105] | 王小林,胡文瑄,陈琪,等. 塔里木盆地柯坪地区上震旦统藻白云岩特征及其成因机理[J]. 地质学报,2010,84(10):1479-1494. Wang Xiaolin, Hu Wenxuan, Chen Qi, et al. Characteristics and formation mechanism of Upper Sinian algal dolomite at the Kalpin area, Tarim Basin, NW China[J]. Acta Geologica Sinica, 2010, 84(10): 1479-1494. |
| [106] | 由雪莲,孙枢,朱井泉. 塔里木盆地中上寒武统叠层石白云岩中微生物矿化组构特征及其成因意义[J]. 中国科学:地球科学,2014,44(8):1777-1790. You Xuelian, Sun Shu, Zhu Jingquan. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Science China Earth Sciences, 2014, 44(8): 1777-1790. |
| [107] | 胡文瑄,朱井泉,王小林,等. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义[J]. 石油与天然气地质,2014,35(6):860-869. Hu Wenxuan, Zhu Jingquan, Wang Xiaolin. Characteristics, origin and geological implications of the Cambrian microbial dolomite in Keping area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 860-869. |
| [108] | Liu S A, Liu P P, Lv Y W, et al. Cu and Zn isotope fractionation during oceanic alteration: Implications for oceanic Cu and Zn cycles[J]. Geochimica et Cosmochimica Acta, 2019, 257: 191-205. |
| [109] | Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions[J]. Palaeogeography, Palaeo-climatology, Palaeoecology, 2006, 232(2/3/4): 362-407. |
| [110] | Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5529): 484-487. |
| [111] | Peckmann J, Thiel V. Carbon cycling at ancient methane–seeps[J]. Chemical Geology, 2004, 205(3/4): 443-467. |
| [112] | Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. Geological Society of America Bulletin, 1987, 98(2): 147-156. |
| [113] | Aloisi G, Gloter A, Krüger M, et al. Nucleation of calcium carbonate on bacterial nanoglobules[J]. Geology, 2006, 34(12): 1017-1020. |
| [114] | Rivadeneyra M A, Delgado R, Párraga J, et al. Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: Influence of salt concentration[J]. Folia Microbiologica, 2006, 51(5): 445-453. |
| [115] | Tong H P, Feng D, Peckmann J, et al. Environments favoring dolomite formation at cold seeps: A case study from the gulf of Mexico[J]. Chemical Geology, 2019, 518: 9-18. |
| [116] | 张亦凡. 类白云石结构碳酸盐的低温合成及微结构研究[D]. 合肥:中国科学技术大学,2020:1-151. Zhang Yifan. Study on the low-temperature syntheses and microstructure of dolomite-analogous carbonates[D]. Hefei: University of Science and Technology of China, 2020: 1-151. |
| [117] | Farkas L, Bolzenius B H, Will G. Powder diffraction data and unit cell of kutnohorite[J]. Powder Diffraction, 1988, 3(3): 172-174. |
| [118] | Beran A, Zemann J. Refinement and comparison of the crystal structures of a dolomite and of an Fe-rich ankerite[J]. Tschermaks Mineralogische und Petrographische Mitteilungen, 1977, 24(4): 279-286. |
| [119] | Rosenberg P E, Champness P E. Zincian dolomites and associated carbonates from the Waryński Mine, Poland: An AEM investigation[J]. American Mineralogist, 1989, 74(3/4): 461-465. |
| [120] | Lippmann F. Syntheses of BaMg (CO3)2 (norsethite) at 20 ℃ and the formation of dolomite in sediments[M]//Müller G, Friedman G M. Recent developments in carbonate sedimentology in Central Europe. Berlin: Springer, 1968: 33-37. |
| [121] | Effenberger H, Zemann J. Single crystal X-ray investigation of norsethite, BaMg(CO3)2: One more mineral with an aplanar carbonate group[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1985, 171(3/4): 275-280. |
| [122] | Secco L, Lavina B. Crystal chemistry of two natural magmatic norsethites, BaMg(CO3)2, from anmg-carbonatite of the alkaline carbonatitic complex of Tapira (Se Brazil)[J]. Neues Jahrbuch für Mineralogie Monatshefte, 1999(2): 87-96. |
| [123] | Effenberger H, Pippinger T, Libowitzky E, et al. Synthetic norsethite, BaMg(CO3)2: Revised crystal structure, thermal behaviour and displacive phase transition[J]. Mineralogical Magazine, 2014, 78(7): 1589-1611. |
| [124] | Lippmann F. PbMg(CO3)2, ein neues rhomboedrisches doppelcarbonat[J]. Naturwissenschaften, 1966, 53(24): 701. |
| [125] | Goldsmith J R. Cadmium dolomite and the system CdCO3-MgCO3 [J]. The Journal of Geology, 1972, 80(5): 617-626. |
| [126] | Froese E. A note on strontium magnesium carbonate[J]. The Canadian Mineralogist, 1967, 9(1): 65-70. |
| [127] | Bragg W L. The analysis of crystals by the X-ray spectrometer[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1914, 89(613): 468-489. |
| [128] | Kharaka Y K, Barnes I. SOLMNEQ. Solution-mineral equilibrium computations. [Equilibrium distribution of aqueous species in natural waters at 0 to 350/sup 0/][D]. Berkeley: University of California, 1973. |
| [129] | Dean J A. Lange's handbook of chemistry[M]. New York: McGraw-Hill, 1999. |